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mmp@stat.washington.edu

Problem 1 – Mean Shift clustering
Implement the kernel density estimator (KDE) with Gaussian kernel for data in 1 dimension (was
done in Homework 1).

a. Read the input data D = {x1, . . . xn} from the file hw2-p1.dat and plot the KDE on the
interval [−4, 10]. For this, you will create a grid x̃1, . . . x̃l on [−4, 10] and calculate fh(x̃j), j = 1 : l.
Choose h = 0.4.

b. Implement the function mean shift() that takes as input the data D, the kernel width h, an
initial point x and outputs the value x′ where the Mean-Shift started at x converges. Convergence
should be achieved at the first iteration when the mean shift step m(x) − x is smaller than tol =
10−3h. Limit the total number of iterations to a number such as T = 100. [Optionally: what should
mean shift() return when T is reached? What do you think should happen then?]

c. Using mean shift(), implement the Mean-Shift clustering algorithm. Specifically, initialize
mean shift() with every xi ∈ D and record x′i the convergence point. Plot the values (x′i, fh(x′i))
for all the data, superimposed on the KDE graph. Make sure the graph is legible.

d. Theoretically, all x′i which are equal would be assigned to the same cluster, but in practice
none of these values will be equal. Implement one of the following heuristics.

Rounding Choose a tolerance δ. Take δ = 5tol. Then compute yi = round(
x′
i

δ ). Now assign
all i’s with the same yi to the same cluster.

Nearest neighbors Choose a tolerance δ like above. Connect all the x′i points that have
distance |x′i− x′j | < δ. The connected components of this graph are the clusters. For the connected
components algorithm, OK to use library software. However, in 1 dimension, there is a very simple
method to find them, or directly the clusters. Extra credit for implementing the algorithm yourself,
give clear pseudocode and/or code snippets in the submitted homework.

Choose one of the methods and compute the cluster assignments k(i) for the data D. For this
problem k(i) should be an integer between 0 and K − 1 where K is the total number of clusters
you found.

Plot the data as k(i) vis xi, and superimpose the KDE on this graph. The following is an
example plot. The bar-like visualization is created by scatter plot with points {(xi, k(i))}ni=1. You
will need to scale the cluster assignments, k(i) ∈ {0, . . . ,K−1}, accordingly to make the plot of the
same scale as your KDE plot; any scaling that makes the plot readable is good; labels don’t need
to increase from left to right, either. Output the cluster assignements in the ASCII file p1-d.out

having n integers, each in a new line as in hw2-p1.dat, representing k(i) for i = 1 : n and submit
this file.

e. Now select a subset of n′ = 25 data points at random, and re-run steps c, d. Plot the graph
in d with both clusterings on the same graph.

Problem 2 – Dendrograms and distances between clusterings – Moved to Hw 3,
do not submit anything
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Figure 1: Plot of hw2-toy-dendro.dat from Problem 2.

a. Figure 1 below displays n = 12 data points found in file hw2-toy-dendro.dat. The first
two columns contain the x and y coordinates and the third column contains the label. Compute
all the distances between these points (you do not need to submit code or output). Using the
calculated distance matrix, draw the dendrogram of this dataset obtained by the Single Linkage
Algorithm. Implemementation is not required. The algorithm can be “run” manually for these
data and the dendrogram can be copied by hand.

Use the plot on the right to display this dendrogram; the height of a dendrogram node should
be equal to the distance between the two clusters merged at this node. Recall that the distance
between two clusters C1 and C2 in the single-linkage framework is given by

distance(C1, C2) = min
x∈C1,y∈C2

||x− y||2. (1)

b. The dendrogram in Figure 2 displays the output of a different hierarchical clustering al-
gorithm on the same data as above. On the plots below, draw the first 5 stages of this algorithm
(from the top down). Stages are denoted by the number of clusters K; for example level K = 2
is the clustering with 2 clusters, resulting after the first split, level K = 3 results after the second
split and has 3 clusters, etc.

c. Denote by ∆1 the clustering at level K1 = 3 in the dendrogram obtained in a, and denote
by ∆2 the clustering at level K2 = 4 in the dendrogram in b. Compute the confusion matrix M
of these clusterings. Cluster labels are arbitrary, hence any permutation of rows or columns of a
correct M is equally correct

d. From the confusion matrix M obtained in c, calculate the Misclassification Error distance
dME(∆1,∆2).

e. From the confusion matrix M obtained in c, calculate N22, N12, N21 and the Jaccard index
J(∆1,∆2).

f. Calculate the n×K matrix representation X̃1,2 for clusterings ∆1,∆2 (see Lecture II, part

3). Verify that M = X̃T
1 X̃2. Provide a code snippet that prints M , X̃1, and X̃2, and computes and

prints

||M − X̃T
1 X̃2||F ,

where || · ||F denotes the Frobenius norm of a matrix.

g. Prove that M = X̃T
1 X̃2 for any two (arbitrary) clusterings represented by X̃1, X̃2.
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Figure 2: Dendrogram on hw2-toy-dendro.dat.

h. Denote Z̃(∆) = X̃X̃T . Show that Z ∈ {0, 1}n×n. Find a simple expression for the Jaccard
index of clusterings ∆1,2 as a function of Z̃1,2 and n. Both matrix and elementwise arithmetic

or Boolean operations with Z̃1,2 are allowed as long as they are on all elements. E.g. Z̃1 +

3Z̃2, max(Z̃1, Z̃2); Z̃1 + C (where C is a constant matrix).

Problem 3 – Mean-Shift is gradient ascent
One may wonder why not use gradient ascent to find the peaks of fh(x) and how would it compare
with Mean-Shift. Here you will prove that Mean-Shift is actually a gradient ascent algorithm with
automatically chosen step size.

Calculate the expression of ∇ ln fh(x); then show that ∇ ln fh(x) ∝ m(x) − x the Mean-Shift
step, with a proportionality constant independent of x.

Problem 4 – NP clustering example Give a concrete real world example, preferable from
your own research experience, where collecting more data reveals more clusters. Extra credit for a
more specific example.
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Figure 3: Plots on which to draw cluster assignments at each stage of the dendrogram from Figure
2.
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