
Figure 1: Plot of hw2-toy-dendro.dat from Problem 2.

STAT/BIOST 527
Homework 3

Out Wednesday May 10, 2023
Due Wednesday May 19, 2023

©Marina Meilă
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Problem 1 – Dendrograms and distances between clusterings (from Homework 2)
a. Figure 1 below displays n = 12 data points found in file hw2-toy-dendro.dat. The first
two columns contain the x and y coordinates and the third column contains the label. Compute
all the distances between these points (you do not need to submit code or output). Using the
calculated distance matrix, draw the dendrogram of this dataset obtained by the Single Linkage
Algorithm. Implemementation is not required. The algorithm can be “run” manually for these
data and the dendrogram can be copied by hand.

Use the plot on the right to display this dendrogram; the height of a dendrogram node should
be equal to the distance between the two clusters merged at this node. Recall that the distance
between two clusters C1 and C2 in the single-linkage framework is given by

distance(C1, C2) = min
x∈C1,y∈C2

||x− y||2. (1)

b. The dendrogram in Figure 2 displays the output of a different hierarchical clustering al-
gorithm on the same data as above. On the plots below, draw the first 5 stages of this algorithm
(from the top down). Stages are denoted by the number of clusters K; for example level K = 2
is the clustering with 2 clusters, resulting after the first split, level K = 3 results after the second
split and has 3 clusters, etc.

c. Denote by ∆1 the clustering at level K1 = 3 in the dendrogram obtained in a, and denote
by ∆2 the clustering at level K2 = 4 in the dendrogram in b. Compute the confusion matrix M
of these clusterings. Cluster labels are arbitrary, hence any permutation of rows or columns of a
correct M is equally correct

d. From the confusion matrix M obtained in c, calculate the Misclassification Error distance
dME(∆1,∆2).
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Figure 2: Dendrogram on hw2-toy-dendro.dat.

e. From the confusion matrix M obtained in c, calculate N22, N12, N21 and the Jaccard index
J(∆1,∆2).

f. Calculate the n×K matrix representation X̃1,2 for clusterings ∆1,∆2 (see Lecture II, part

3). Verify that M = X̃T
1 X̃2. Provide a code snippet that prints M , X̃1, and X̃2, and computes and

prints

||M − X̃T
1 X̃2||F ,

where || · ||F denotes the Frobenius norm of a matrix.

g. Prove that M = X̃T
1 X̃2 for any two (arbitrary) clusterings represented by X̃1, X̃2.

h. Denote Z̃(∆) = X̃X̃T . Show that Z ∈ {0, 1}n×n. Find a simple expression for the Jaccard
index of clusterings ∆1,2 as a function of Z̃1,2 and n. Both matrix and elementwise arithmetic

or Boolean operations with Z̃1,2 are allowed as long as they are on all elements. E.g. Z̃1 +

3Z̃2, max(Z̃1, Z̃2); Z̃1 + C (where C is a constant matrix).

Problem 2 – Leave one out CV and support vectors
Assume the data set D contains n samples. You perform leave-one-out cross-validation i.e, for
i = 1 : n you compute a linear support vector machine classifier f−i on n − 1 points, leaving out
(xi, yi). More precisely, f−i is a SVM trained on D−i = D \ {(xi, yi)}.

a. Assume that the original data set is linearly separable. Prove that each of the n support
vector problems is also linearly separable.

b. Is it possible that f−i(x) ≡ f−j(x) for i 6= j two points in the training set D? Give a short
motivation or proof.
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Figure 3: Plots on which to draw cluster assignments at each stage of the dendrogram from Figure
2.
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c. Denote by L̂loo
01 the error rate in leave-one-out CV, i.e

L̂loo
01 =

|{i, f−i(xi) 6= yi}|
n

Prove that L̂loo
01 ≤

#support vectors of f
n , where f is the linear support vector classifier trained on all

the data.

[Problem 3 – Quadratic kernel – NOT GRADED]

In this problem, the points lie on the real line, there are two classes and we use the polynomial
degree 2 kernel K(x, x′) = (1 + xx′)2.

1. What is the mapping φ : R −→ Rd satisfying

K(x, x′) = φ(x)Tφ(x′)

and what is its dimension d?

2. Let the data be D = { (−1,+1), (0,−1), (1,+1) }.
Compute φ(xi) and the Gram matrix for this dataset.

3. Write the expression of the primal SVM problem for this data set. Be specific, give numerical
values.

4. Write the expression of the dual SVM problem for this data set. Be specific, give numerical
values.

5. This dual problem is small enough that it can be solved “manually”. [Hint: you can notice
that due to symmetry, α1 = α3 and turn it into a 2 variable problem.] Show that the solution
is α1 = α3 = 1, α2 = 2.

6. What are the values of w and b? Write the expression of the discriminant function f(x) =
wTφ(x) + b. Write the same function now using the kernel K. What are the decision regions
of this classifier?

Make a sketch of the data and the decision regions.

Problem 4 – SVM solution

a. Let f =
∑n

i=1 αiKxi(), where x1:n ∈ Rd are vectors, K(x, x′) is a Mercer kernel defining a
scalar product, and Kx(u) ≡ K(x, u). Give an expression for

〈f, f〉H = ‖f‖2H.

b. Assume now that you have a non-linear SVM with C = 0, defined by a kernel K( , ) and by the
feature map φ : Rn → H. In this case, w ∈ H, hence it cannot be represented explicitly. However,
its norm in H can be computed as ‖w‖2H =< w,w >H.

Assume that you have solved the dual problem and that the dual variables α1:N , as well as b
are known. It is a fact from convex optimization that (under generic conditions) the optimal value
of the Primal SVM problem is equal to the optimal value of the Dual SVM problem (this is known
as strong duality). Show that

‖w‖2H =

n∑
i=1

αi (2)
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