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Lecture IV – Hierarchical clustering. Comparing clusterings
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Hierarchical clustering

14

§ Agglomerative (bottom up):
§ Initially, each point is a cluster
§ Repeatedly combine the two 

“nearest” clusters into one
§ Divisive (top down):

§ Start with one cluster and recursively split it

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
Marina Meila (UW Statistics) STAT/BIOST 527 2 / 17
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Hierarchical clustering

Hierarchical clustering – Overview

(Dendrograms)

Agglomerative (bottom up)
Single linkage

based on Minimum Spanning Tree
O(n2 log n)
sensitive to outliers

Heuristics – average linkage
Agglomerative K-means

Loss L(�K ) = 0 for K = n

When K  K � 1 (two clusters merged), L increases
For K = n, n � 1, . . . 2, iteratively merge the 2 clusters that minimize increase of L
O(n3) – too expensive for big data

Divisive (bottom down)
Recursively split D into K = 2 clusters
almost any clustering algorithm (e.g. K-means, min diameter)
notable example Spectral clustering (later)

Advantages
most important splits are first
can stop after only a few splits

Marina Meila (UW Statistics) STAT/BIOST 527 4 / 17
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Hierarchical clustering

16

(5,3)
o

(1,2)
o

o  (2,1) o  (4,1)

o  (0,0) o (5,0)

x (1.5,1.5)

x (4.5,0.5)
x (1,1)

x (4.7,1.3)

Data:
o … data point
x … centroid Dendrogram
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Lecture V: Support Vector Machines and Kernel Machines

Marina Meilă
mmp@stat.washington.edu
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Linear SVM’s
The margin and the expected classification error
Maximum Margin Linear classifiers
Linear classifiers for non-linearly separable data

Non linear SVM
The “kernel trick”
Kernels
Prediction with SVM

Extensions
L1 SVM
Multi-class and One class SVM
SV Regression

Reading AoNPS Ch.: Ch. 12.1–3, HTF Ch.: Ch 14 (14.1,14.2–14.2.4 kernels, 14.4 and equations

(14.28,14.29) kernel trick, 14.5.1.–3 Support Vector Machines)7.1–7.4, 7.7
Additional Reading: C. Burges - “A tutorial on SVM for pattern recognition”
These notes: Appendices (convex optimization) are optional.
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The margin and the expected classification error

Theorem Let F = {sgn (wT
x), ||w ||  ⇤, ||x ||  R} and let ⇢ > 0 be any “margin”. Then for

any f 2 F , w.p 1� � over training sets

L01(f )  L̂⇢ +

s
c

n

✓
R2⇤2

⇢2
ln n2 + ln

1

�

◆
(5)

where c is a universal constant and L̂⇢ is the fraction of the training examples for which

y
i
w

T
xi < ⇢ (6)

I a data point i that satisfies (6) for some ⇢ is called a margin error

I For ⇢ = 0 the margin error rate L̂⇢ is equal to L̂01
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Maximum Margin Linear classifiers

Support Vector Machines appeared from the convergence of Three Good Ideas
Assume (for the moment) that the data are linearly separable.
I Then, there are an infinity of linear classifiers that have L̂01 = 0. Which one to choose?

First idea Select the classifier that has maximum margin ⇢ on the training set.
I For any parameters (w , b) that perfectly classify the data L̂(w , b) = 0.
I Among these, the best (w , b) is the one that minimizes ⇢ in 5
I Hence, we should choose

argmax
⇢,w,b:L̂(w,b)=0

⇢, s.t. d(x ,Hw,b) � ⇢ for i = 1 : n, (7)

where d() denotes the Euclidean distance and Hw,b = { x |w
T
x + b = 0} is the decision

boundary of the linear classifier.

I Because d(x ,Hw,b) =
|wT

x+b|
||w|| (proof in a few slides) (7) becomes

argmax
⇢,w,b:L̂(w,b)=0

⇢, s.t.
|w

T
x
i + b|

||w ||
� ⇢ for i = 1 : n, (8)
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Maximum Margin Linear classifiers

We continue to transform (8)

I If all data correctly classified, then y
i (wT

x
i + b) = |w

T
x
i + b|. Therefore (8) has the

same solution as

argmax
⇢,w,b

⇢, s.t.
y
i (wT

x
i + b)

||w ||
� ⇢ for i = 1 : n, (9)

I Note now that the problem (9) is underdetermined. Setting w  Cw , b  Cb with C > 0
does not change anything.

I We add a cleverly chosen constraint to remove the indeterminacy; this is||w || = 1/⇢,
which allows us to eliminate the variable ⇢. We get

argmax
w,b

1

w
, s.t. y

i (wT
x
i + b) � 1 for i = 1 : n, (10)

Note: the successive problems (7),(8),(9),. . . are equivalent in the sense that their optimal
solution is the same.
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Alternative derivation of (10)

First idea Select the classifier that has maximum margin on the training set, by the alternative
definition of margin.
Formally, define mini=1:n y

i
f (xi ) be the margin of classifier f on D. Let f (x) = w

T
x + b,

and choose w , b that

maximizew2Rn,b2R min
i=1:n

y
i (wT

x
i + b) s.t. L̂(w , b) = 0

I Remarks
I (if data is linearly separable), there exist classifiers with margins > 0
I one can arbitrarily increase the margin of such a classifier by multiplying w and b by a positive

constant.
I Hence, we need to “normalize” the set of candidate classifiers by requiring instead

maximize min
i=1:n

d(x,Hw,b), s.t. y i (wT
x
i + b) � 1 for i = 1 : n, (11)

where d() denotes the Euclidean distance and Hw,b = { x |w
T
x + b = 0} is the decision

boundary of the linear classifier.
I Under the conditions of (11), because there are points for which |w

T
x + b| = 1, maximizing

d(x,Hw,b) over w , b for such a point is the same as

max
w,b

1

||w ||
, s.t. min

i

yi (w
T
x + b) = 1 (12)
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Second idea

The Second idea is to formulate (10) as a quadratic optimization problem.

min
w,b

1

2
||w ||

2 s.t y i (wT
x
i + b) � 1 for all i = 1 : n (13)

This is the Linear SVM (primal) optimization problem

I This problem has a strongly convex objective ||w ||
2, and constraints y

i (wT
x
i + b) linear

in (w , b).
I Hence this is a convex problem, and can be studied with the tools of convex optimization.
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The distance of a point x to a hyperplane Hw ,b

d(x ,Hw,b) =
|w

T
x + b|

||w ||
(14)

Intuition: denote

w̃ =
w

||w ||
, b̃ =

b

||w ||
, x

0 = w̃
T
x . (15)

Obviously Hw,b = H
w̃,b̃, and x

0 is the length of the projection of point x on the direction of w .

The distance is measured along the normal through x to H; note that if x 0 = �b̃ then
x 2 Hw,b and d(x ,Hw,b) = 0; in general, the distance along this line will be |x

0
� (�b̃)|.


