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Lecture V.1 – Build your own RKHS in 4 easy steps
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Outline

1 RKHS – why bother?

2 From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

3 Properties of RKHS’s

Reading AoNPS Ch.: , HTF Ch.:

Marina Meila (UW Statistics) L V1 RKHS STAT/BIOST 527 Spring 2023 2 / 12



M
ar
in
a
M
ei
la
:
L
V
1
R
K
H
S

S
T
A
T
/
B
IO

S
T

5
2
7
S
pr
in
g
2
0
2
3

3

RKHS – why bother?

RKHS – why bother?

Practical goal = learning a predictor f : X ! R
If f depends on a kernel K() and we ensure K() � 0, then f will be guaranteed to have
some nice properties and be (statistically) safe to use

RKHS , K() � 0
So what does RKHS give us?

x 2 X $ �(x) 2 H, with �(x) ⌘ Kx () the feature map (1)

f : X ! R non-linear $ linear functional f on H ⌘ f 2 H (2)

f (x) $ f
T�(x) (3)

any f 2 L
2(X) $ representable in basis [ 1:1] induced by K() (4)

and approximation by  1:m converges uniformly (5)

How do you obtain such predictor f ?
SVM / Kernel machines (frequentist + regularization)
Gaussian Processes (Bayesian)
Neural Net (NTK)
. . .
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From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

Ingredients

a base space X, which in ML is the input space.
For example Rd , or {x 2 Rd , kxk  R}.
a kernel K() over X, that defines a scalar product.

L2(X), the space of functions that have finite 2-norm on X.

L
2(X) = {f : X ! R,

Z

X
f
2(x)dx < 1} (6)

A kernel defines a scalar product on X i↵ it is positive definite in the following sense
Z

X
f (x)f (x 0)K(x , x 0)dxdx 0 > 0, for all f 6⌘ 0, f 2 L

2(X). (7)

In particular, from (7) it follows that for any set x1:n, the Gram matrix

G =
h
K(xi , xj )

in
i,j=1

� 0. (8)

Exercise Prove this

Marina Meila (UW Statistics) L V1 RKHS STAT/BIOST 527 Spring 2023 4 / 12



Ingredients

a base space X, which in ML is the input space.
For example Rd , or {x 2 Rd , kxk  R}.
a kernel K() over X, that defines a scalar product.

L2(X), the space of functions that have finite 2-norm on X.

L
2(X) = {f : X ! R,

Z

X
f
2(x)dx < 1} (6)

A kernel defines a scalar product on X i↵ it is positive definite in the following sense
Z

X
f (x)f (x 0)K(x , x 0)dxdx 0 > 0, for all f 6⌘ 0, f 2 L

2(X). (7)

In particular, from (7) it follows that for any set x1:n, the Gram matrix

G =
h
K(xi , xj )

in
i,j=1

� 0. (8)

Exercise Prove this

20
23

-0
5-
08

L V1 RKHS

From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

Ingredients

Remark 1

Scalar Product

A scalar product h i on X (also called inner product).

h i : X ⇥ X ! R is a scalar product i↵ it is

1. Symmetric hx, x0
i = hx

0, xi.
2. Positive definite hx, xi > 0 for all x 6= 0.
3. Bilinear (i.e. linear in each argument) h↵x1 + �x2, x

0
i = ↵hx1, x

0
i + �hx2, x

0
i (and

similarly for second argument). Note that it su�ces to be symmetric and linear in first

argument.
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From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

The recipe

Given X, kernel K over X
1 The feature map x 7! Kx () = K(x , )

Every x 2 X maps to the function Kx : X ! R, defined as Kx (u) = K(x, u) for all u 2 X.
Hence, each x is also a function in L

2(X); we write this X ,! L
2(X). But the set {Kx , x 2 X}

has a lot of “holes”, it’s not useful! Must be “filled in”.

2 Start by expanding it into a linear space, the space of all finite sums of Kx ’s.

H0 = span{Kx , x 2 X} = {

nX

i=1

↵iKxi
, for n = 1, 2, . . . , ↵1:n 2 R, x1:n 2 X} (9)

This is still not enough, we would like to include limits of sequences in H0, e.g. infinite
sums. For limits we need a distance.
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From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

The recipe

Remark 2

Complete metric space In a complete space H, if a sequence {fn}
1

n=1 has a limit f , then f is also

in H; moreover (and this is the actual definition), if a sequence is Cauchy, meaning that

distance(fn, fm) ! 0 for m, n ! 1, then the limit f exists and is in H.

Remark 3

Hilbert space A Hilbert space is an infinite dimensional vector space that has a scalar product

and is complete.
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From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

The recipe (2)

3 Define a scalar product h iH on H0, by means of the kernel K . Let

hKx ,Kx0 iH = K(x , x 0). (10)

Hence, the scalar product defined by K on X, is transported to H0. This is su�cient to
define the scalar product on all of H0 because for any f , g 2 H0,

hf , giH = h

nX

i=1

↵iKui
,

mX

j=1

�jKvj
iH =

nX

i=1

mX

j=1

↵i�j hKui
,K

vj
iH (11)

=
nX

i=1

mX

j=1

↵i�jK(ui , v j ) (12)

Exercise Prove that h iH is a scalar product.
4 The scalar product h iH allows us to define a norm

kf k
2
H

= hf , f iH. (13)

Now we can complete H0 to H.

Voila! H is your Reproducing Kernel Hilbert Space (RKHS).
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From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

Recipe, summarized

Input X, kernel K
1 Map X ,! L2(X) by the feature map x 7! Kx () = K(x , )
2 Make it a linear space

H0 = span{Kx , x 2 X} = {
P

n

i=1 ↵iKxi
, for n = 1, 2, . . . , ↵1:n 2 R, x1:n 2 X}

3 Define scalar product h iH on H0, by hKx ,Kx0 iH = K(x , x 0).
4 Complete H0 to H using k kH.
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Properties of RKHS’s

The name RKHS explained

Reproducing Kernel Hilbert Space
– means the space of functions has a scalar product and is complete
Reproducing Kernel Hilbert Space
– the scalar product comes from a kernel
Reproducing Kernel Hilbert Space
– in addition, this space has the Reproducing property (coming next!)
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Properties of RKHS’s

The Reproducing Property hf ,KxiH = f (x)

Let’s prove it. Remember f (x) =
P

n

i=1 aiKui
(x) for f 2 H0, x 2 X.

hf ,Kx iH =
nX

i=1

ai hKui
,Kx iH (16)

=
nX

i=1

aiK(ui , x) = f (x) (17)

In other words, if we map x into H by x 7! Kx and calculate the scalar product with some
f 2 H, the result is the same as applying f to x 2 X.
One can say that Kx reproduces x

Or alternatively that f 2 H, by Riesz’s Theorem, defines the linear functional hf , iH. This
functional on H reproduces the e↵ect of f on X.
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Properties of RKHS’s

Mercer’s Theorem

Define the transport operator T : L2(X) ! H

Tf =

Z

X
f (u)K( , u)du , Tf (x) =

Z

X
f (u)K(u, x)du (18)

Let {(�i , i )}i be the eigenvalue, eigenfunction pairs of T
The Mercer Theorem says that, under certain conditions on X and K , the operator T

1 has a discrete spectrum,
2 is positive semidefinite �i � 0 for i = 1, 2, . . .
3 the eigenfunctions { i}

1

i=1 form an orthogonal basis for L2(X)
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Properties of RKHS’s

Mercer’s Theorem

Remark 4

(Linear) Operator

An (linear) operator T is a (linear) function from a space of functions to another.

For example the derivative maps a function f : R ! R to its derivative f
0
; we can write that

derivative :C
1(R) ! C

0(R) is a linear operator.

For an operator T and function f , we denote by g = Tf ⌘ T (f ), the function resulting from

applying T to f .

Furthermore, if we calculate this function g at point x , we write g(x) = Tf (x)
Operators have eigenfunctions and eigenvalues defined as T = � for some � 2 R
The set of eigenvalues {�, such that T = � for some  } is the spectrum of T .

The spectrum of an operator is usually more complicated than the spectrumof a matrix; for

example, it can contain continuous intervals, the whole real line, limit points. If the spectrum

contains none of these, i.e. consists of only isolated eigenvalues, we say the spectrum is

discrete.
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Properties of RKHS’s

The feature map revisited

The consequences of this theorem are remarkable. In particular, it lets us express the
kernel itself in the basis of T .

K(x , x 0) =
1X

i=1

�i i (x) i (x
0) (19)

Therefore,

K(x , x) =
1X

i=1

�i i (x)
2. (20)

From here, it is easy to see that the feature map x 7! Kx can also be written as

x 7!

hp
�i i (x)

i
1

i=1
(21)

And finally, the infinite sum converges uniformly

lim
n!1

sup
x,x0

�����K(x , x 0)�
nX

i=1

�i i (x) i (x
0)

����� = 0 (22)
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Properties of RKHS’s

The feature map revisited

It’s important to remember that there are 2 scalar products here. There is the scalar product
induced by the kernel K on H, defined in (10) and (11), and there is the standard scalar
product on L

2(X) defined by hf , gi =
R
X f (x)g(x)dx .

The basis { i} is orthonormal w.r.t. the L
2(X) scalar product.

How to prove (19).
 j is eigenfunction, hence

Z

X
 j (x

0)K(x, x0)dx0 = �j j (x). (23)

Now Kx itself has a decomposition in the basis, Kx =
P

i
�i (x) i , where �i (x) are the

coe�cients.
Let’s plug this decomposition in (23)

Z

X
 j (x

0)K(x, x0)dx0 =

Z

X
 j (x

0)
X

i

�i (x) i (x
0)dx0 (24)

=
X

i

�i (x)

Z

X
 j (x

0) i (x
0)dx0 (25)

= �j (x) = �j j (x). (26)

Hence Kx (x
0) ⌘ K(x, x0) =

P
i
�i i (x) (x

0). Done.
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Lecture VI-2: SVM with Random Fourier Features

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

Spring, 2023
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Reading: Ali Rahimi and Ben Recht “Random features for large-scale Kernel Machine”, NIPS
2007. Test of Time Award, NIPS 2017.
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Problem: Kernel machines scale with sample size n

I Gram matrix G = [k(xi , xj )]ni,j=1 2 Rn⇥n. Expensive/intractable for n large!
I Want to: benefit from infinite dimensional feature spaces, e.g. Gaussian kernel, AND have

constant dimension D for any n
I Idea approximate k(x , x 0) with finite sum.
I Equivalently, approximate feature space H with D-dimensional feature space. How? Pick

D features at random!
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Why is this possible? Bochner’s Theorem

Let K(x , x 0) = K(x � x 0) be a continuous shift invariant kernel.

Theorem [Bochner]
K(x � x 0) is a positive definite kernel i↵ K(z) is the Fourier transform of some non-negative
measure p(!).

K(z) =

Z

Rd
p(!)e�i!T zd! (1)

K(z) p(!)

e�||z||2/2 (2⇡)�d/2e�||!||2/2 Gaussian (RBF) kernel
e�||z||1 (2⇡)�d Qd

j=1
1

1+!2
j

Laplace kernel
Qd

j=1
2⇡

1+!2
j

e�||z||1 product kernel
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From Bochner to RFF

I Note that e�i!z = e�i!T x (e�i!T x0 )⇤ and let ⇣!(x) = e�i!T x .
I Then K(z) = Ep(!)[⇣!(x)⇣

⇤
!(x

0)]⇡ 1
D

PD
j=1 ⇣!j (x)⇣

⇤
!j
(x 0) with !1:D ⇠ i.i.d. p(!)

I D is the sample size, must be large enough for good approximation
I ⇣!1:D form a random feature space of dimension D

I Feature map is x ! �̃(x) = 1p
D
[⇣!1 . . . ⇣!D ]

Fact Because K() is real, the random complex features ⇣!  
p
2cos(!T x + !0) with

!0 ⇠ uniform[0, 2⇡]

I Significance Infinite dimensional feature vector �(x) approximated by D-dimensional
feature vector �̃(x). Hence, primal problem of dimension D can be solved instead of dual
of dimension n.

I Opens up SVM/kernel machines for large data
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Approximation

Theorem [Rahimi and Recht 07]
Assume space X is compact of diameter dX and let �2

p = Ep [!T!] be the standard deviation
of p(!). Then,

1.

Pr

"
sup

x,x02X
|�̃(x)T �̃(x 0)� K(x , x 0)| � ✏

#
 e

� D✏2

4(d+2)

✓
24�pdX

✏

◆2

(2)

2. For � confidence level,

D = ⌦

✓
d

✏2
ln

�pdX
✏

◆
(3)
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Kernel machine with RFF algorithm

In Data x1:n, y1:n, kernel K

1. Fourier transform p(!) = 1
2⇡

R
Rd e�i!T zK(z)dz.

2. Choose D.
3. Sample !1:D i.i.d. from p. Sample !0,1:D uniformly from [0, 2⇡].

4. Map data to features �̃(xi ) =
q

2
D [cos(!T

j xi + !0,j )]j=1:D for all i = 1 : n.

5. Solve SVM Primal problem; obtain w 2 RD and intercept b 2 R.


