Lecture 14: Dirichlet Process Mixtures in a nutshell

Marina Meilă mmp@stat.washington.edu

Department of Statistics University of Washington

March 9, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Chinese Restaurant Process

Dirichlet Process Mixture

The Chinese Restaurant Process

- Given parameters $\alpha > 0$, G_0 , with G_0 a continuous measure on measurable space (Θ, \mathcal{B}) .
- Assume we already have samples $\theta_{1:n} \in \Theta$.
- The probability of θ_{n+1} is then

$$\theta_{n+1} | \theta_{1:n} \sim \sum_{k=1}^{K} \frac{K}{n+\alpha} \delta_{\theta_k} + \frac{\alpha}{n+\alpha} G_0.$$
 (1)

In the above, K represents the number of distinct values among the n samples $\theta_{1:n}$.

- This defines a Chinese Restaurant Process (CRP). It is easy to see that the process is exchangeable.
- One can also prove that for $n \to \infty$, $\theta_{1:n} \to G$ where $G \sim DP(\alpha, G_0)$.

Dirichlet Process

- A Dirichlet Process (DP) is distribution over measures.
- Let (Θ, \mathcal{B}) , α, G_0 be as above.
- We say that the random function G is drawn from $DP(\alpha, G_0)$ iff

for any partition $B_{1:K} \subset \mathcal{B}$ of Θ , $G(B_{1:K}) \sim Dirichlet(\alpha G_0(B_{1:K}))$. (2)

Dirichlet Process Mixture

- Given: $DP(\alpha, G_0)$, family of distributions $\{f_{\theta}\}$ on \mathcal{X} .
- ▶ For *i* = 1, 2, . . . *n*

$$\theta_i \sim CRP(\alpha, G_0, \theta_{1:i-1})$$
(3)

 $x_i \sim f_{\theta_i}$
(4)

<□ > < @ > < E > < E > E のQ @

Estimation of DP Mixture by Gibbs sampling

Input α , G_0 , $\{f\}$, $\mathcal{D} = \{x_1, \dots, x_n\} \subseteq \mathcal{X}$ State cluster assignments c_i , i = 1 : n, parameters θ_k for all distinct kIterate 1. for i = 1 : n(reassign data to clusters) 1.1 if $n_{c_i} = 1$ delete this cluster and its θ_{c_i} 1.2 resample c_i by $c_i = \begin{cases} existing k & w.p \propto \frac{n_k}{n-1+\alpha} f(x_i, \theta_k) \\ new cluster & w.p \frac{\alpha}{n-1+\alpha} \int f(x_i, \theta) G_0(\theta) d\theta \end{cases}$ (5) 1.3 if c_i is new label, sample a new θ_{c_i} from $f_{\theta} G_0(\theta)$ 2. (resample cluster parameters) for $k \in \{c_{1:n}\}$ 2.1 sample θ_k from posterior $f_{\theta_k} \propto G_0(\theta) \prod_{i \in C_k} f(x_i, \theta)$ this can be computed in closed form if G_0 is conjugate prior

Output a state with high posterior

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >