

Lecture 4: Combining predictors – Part I

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

November, 2015

There is more than one way to average predictors
Bayesian averaging
Bagging
Stacking
Mixtures of Experts
Forward Fitting and Backfitting

Reducing bias: Boosting
AdaBoost
Properties on the training set

Reading HTF: 15. Random Forests, 16. Ensembles of predictors, 8. Model inference and

averaging, 10. Boosting, Murphy: 16.3, 16.3.1 Generalized Additive models (ignore the

regularization, for ”smoother” read ”minimize loss function”), 16.4.1-5 [and optionally 8] Bosting,

3.2.4 Bayesian model averaging, 16.6.3, 16.6.1 Ensembles of predictors

There is more than one way to average predictors

Classification will be the running exaple here, but most results hold for other
prediction problems as well.
Denote B = {b} a base classifier family
Averaging:

f (x) =
MX

k=1

�kbk (x) (1)

f is real-valued even if the bk ’s are ±1 valued
Why average predictors?

I to reduce bias

I to compensate for local optima (a form of bias)

I to reduce variance

I if b1, b2, . . . bM make independent errors, averaging reduces expected error (loss).
We say that b1 and b2 make independent errors ,
P(b1 wrong | x) = P(b1 wrong | x , b2 wrong)

I because the bk functions are given: real world domain experts (weather
prediction), a set of black-box classifiers (from a software package), a set of
[expert designed] features (speech recognition, car/human recognition) each of
them weakly informative of y

I because B is a set of (simple) “basis functions” and we need a more complex
predictor in our task

Averaging is not always the same thing

Depending how we choose B, b1, b2, . . . bM and �1,�2, . . .�M , we can obtain very
di↵erent e↵ects.
We will examine

I Bayesian averaging (briefly)

I Mixtures of experts (briefly)

I Bagging (briefly)

I Backfitting (briefly)

I Stacking (see Murphy)

I Boosting

Bayesian averaging

Assume any predictor b 2 B could be the “true” predictor with some prior probability
P0(b). Learning means changing the probability distribution of b after seeing the data.
Before seeing data P0(b) prior probability of b
After seeing D P(b|D) posterior probability of b

Bayes formula P(b|D) = P0(b)P(D|b)P
b02B P0(b0)P(D|b0)

Classification of a new instance by Bayesian averaging:

f (x) =

Z

B
b(x)dP(b|D)

or

P(y |x ,D) =

Z

B
1b(x)=y dP(b|D)

Hence classifiers (or more generally predictors) are weighted by their posterior
probability.
Intuition: The likelihood becomes more concentrated when N increases

Bayesian averaging and model complexity

I model too simple: likelihood low, prior
high

I model about right: likelihood high,
prior not too low

I model too complex: likelihood high,
prior very low

Bayesian averaging in practice.

P̂(bk |D) =
P0(bk)P(D|bk)

PM
k0=1 P0(bk0)P(D|bk0)

⌘ �k

b1:M are either sampled from B, or trained separately (e.g local minima of L̂, models
of di↵erent complexities)
Priors in practice

I non-informative

I complexity penalizing, sparsity inducing, etc

Reducing variance: Bagging

What if we had several (independently sampled) trainig sets D1,D2, . . .DM?

I we could train classifiers {b1, b2, . . . bM} on the respective D1,D2, . . .DM

I we could estimate EP(b)[b] ⇠ f = 1
M

PM
k=1 b

k

I f has always lower variance than bk

Idea of bagging: sample D1,D2, . . .DM from the given D and estimate bk on Dk

f (x) = sgn
1

M

MX

k=1

bk (x)

Thus, bagging is a form of boostrap.

Bagging reduces variances

It was shown theoretically and empirically that bagging reduces variance.
Bagging is good for

I base classifiers with high variance (complex)

I unstable classifiers (decision trees, decision lists, neural networks)

I noisy data

Example

Random Forests A large ensemble of decision trees is fitted to the same data set,
introducing randomness in various ways, such as (1) resampling the data set, (2)
taking random splits, with probabilities that favor “good” splits, etc. The output
predictor is the (unweighted) average of all the trees.

I can be extended to more than classification (regression, feature selection)

I training can be done in parallel

I computing f (x) on new example is fast enough

I VERY POPULAR in industry

Stacking

I very general method (any kind of predictors or costs)

I for complex base classifiers

1. Fit predictors b1, . . . bM to the data D. The predictors can be from di↵erent
model classes (i.e neural networks, CART, nearest neighbors, logistic regressions)
or use di↵erent sets of features.
For k = 1 : M, for data point i = 1 : N

I train bk
�i from the model class of bk on D \ {(xi , y i)}

2. Fit coe�cients �1:M by minimizing the leave-one-out (loo) empirical cost L̂loo

L̂loo(�1:M =
1

N

NX

i=1

L(y i ,
MX

k=1

�kb
k
�i (x

i)) (2)

(or by cross-validation).

Note that if L is a non-linear function, the minimization in (2) is a non-linear
minimization, and in particular for convex losses this is a convex optimization problem
in �1:M .

Mixtures of Experts

Here �k = �k (x), and
P

k �
k (x) = 1 for all x in the domain of the inputs.

Idea each bk is an “expert” in one region of the input space.
Wanted f ⇡ bk (x) in the region of expertise of expert bk

The vector function �(x) = [�1(x) . . . �M(x)] is sometimes called the gating function.

Example

Suppose the true function to learn is f ⇤(x) = |x |, x 2 R. This can be well
approximated by two linear experts f 1(x) = x , f 2(x) = �x with weights
�1 = �(x),�1 = �(�x), where � is the sigmoid function (hence �1 + �2 = 1
everywhere.

The example highlights that, by using a mixture of experts we can construct a more
complex classifier by from simple classifiers (linear). “Simple” can mean easy to fit, or
low complexity (aka simple decision region), or both. The e↵ective sample size for each
bk is smaller than N, and corresponds to the data for which �k (xi) is away from 0.

For more than two experts, a natural gating function is the softmax function

�k (x) =
ev

T
k x

PM
l=1 e

vTl x
with vl 2 Rn a vector of parameters (3)

Training By descent methods. Often the experts f 1:M and gating functions �1:M are
trained simultaneously (to maximize log-likelihood) by steepest descent, or EM
algorithm (which we’ll study later).

Forward Fitting and Backfitting

(bk ,�k) are fitted iteratively (sequentially), one k at a time.
In some cases, the weights �k can be absorbed into bk .
f t is f at iteration t The residual r 2 RN is defined as r t(xi) = y i � f t(xi).

ForwardFitting Algorithm
Input M, labeled training set D

Initialize f = 0
repeat

for k = 1, 2, . . .M
fit k-th predictor �k , bk =argminL̂(f + �b)
update f = f + bk�k

until change in L̂ small enough (or, change in bk small enough)
Output f (x) =

PM
k=1 �

kbk (x)
Note that M does not have to be set in advance (just like in boosting).

Backfitting

Set M at the beginning, and cycle through the M predictors, updating predictor k
while keeping the others fixed. Denote by

f �k (x) =
X

l 6=k

�kbk (x) (4)

the combined predictor f “minus” the k-th base predictor bk .

BackFitting Algorithm
Input M, labeled training set D

Initialize b1:M = 0, [�1:M = 0 if there are coe�cients �]
repeat

for k = 1, 2, . . .M
calculate rk (xi) = y i � f �k (xi), i = 1 : N
optimize L̂ w.r.t k-th base predictor �k , bk =argminL̂(rk + �b)

until change in L̂ small enough (or, change in b1:M small enough)
Output f (x) =

PM
k=1 �

kbk (x)

Often these methods are used when bk are assumed to be simple, weak, and the
predictor f is built from the cooperation of several b’s. Thus, they are generally bias
reduction method.

Example

Least squares regression In this problem, it is useful to denote

rk (xi) = y i � f �k (xi) (5)

the residual of f �k at data point xi . Then, LLS (y i , f (xi)) = y i � f �k (xi)� �kbk (xi).
Hence, optimizing L̂LS w.r.t. �k , bk can be expressed as

�k , bk = argmin
�,b

NX

i=1

(r i � �b(xi))2 . (6)

In other words, each step of backfitting is a least squares regression problem, where
the output variable values y i are replaced with the current residuals r i .

See also Additive Models

Reducing bias: Boosting

Base classifier family B has large bias (e.g. linear classifier, decision stumps) but
learning always produces b that is better (on the training set) than random guessing.
Preconditions for boosting

1. Learning algorithm accepts weighted data sets. Training minimizes

L̂w01(b) =
NX

i=1

wiL01(y
i , b(xi)) with

NX

i=1

wi = 1.

2. B is a weak classifier family. For any D and any weights w1:N there can be found
b 2 B such that the training error of b on D is bounded below one half.

0 < L̂w01(b) � <
1

2

Idea of boosting: train a classifier b1 on D, then train a b2 to correct the errors of b1,
then b3 to correct the errors of b2, etc.

Example

Boosting with stumps

Stumps are decision trees with a single split.
(below, c1 . . . c4 denote the coe�cients �1:4).

AdaBoost Algorithm

AdaBoost Algorithm
Assume B contains functions b taking values in [�1, 1] or {±1}

Input M, labeled training set D
Initialize f = 0

w1
i = 1

N weight of datapoint xi
for k = 1, 2, . . .M

1. “learn classifier for D with weights wk”) bk

2. compute error "k =
PN

i=1 w
k
i

1�yi b
k (xi)

2

3. set �k = 1
2 ln 1�"k

"k

4. compute new weights wk+1
i = 1

Zk w
k
i e

��k yi b
k (xi) where Zk is

the normalization constant that makes
P

i w
k+1
i = 1

Output f (x) =
PM

k=1 �
kbk (x)

Remarks

1. If b(x) 2 {±1} then y i b(xi) 2 {±1}, and 1�y i b(xi)
2 = 1 if an error occurs and 0

otherwise. Thus, "k in step 2 adds up the weights of the errors.
If b(x) 2 [�1, 1] then the errors contribute di↵erent amounts to the loss
depending on their margin.

2. In both cases, "k 2 [0, �], � < 0.5 by the weak learner property of B
3. �k > 0 whenever "k < 1/2.
4. If b 2 {±1}, then step 4 can be written equivalently (up to a multiplicative

constant)

wk+1
i =

(
1
Zk w

k
i if bk (xi) = yi

1
Zk w

k
i e

2�k
if bk (xi) 6= yi

(7)

This form corresponds to the DiscreteAdaBoost algorithm, the first AdaBoost
algorithm published, which assumed b(x) 2 {±1}. As we shall see later, modern
boosting algorithms dispense with the assumption b 2 [�1, 1] too.

An interpretation of the weights

wk+1
i =

1

N

Y

k0k

e��k0 yi b
k0 (xi)

Zk0
=

e�yi f
k (xi)

N
Q

k0k Z
k

(8)

I weight of example i at step k is proportional to e�yi f
k�1(xi) the exponential of its

negative margin

I Examples that have been hard to classify get exponentially high weights.

I Examples that are classified with high margins get vanishingly small weights.

The normalization constant is an average loss

If we sum both sides of (8) over i we obtain

1 =

P
i e

�yi f
k (xi)

N
Q

k0k Z
k
, (9)

or
Y

k0k

Zk =

P
i e

�yi f
k (xi)

N
⌘ L̂�(f

k) (10)

where
�(z) = e�z . (11)

and
L�(y , f (x)) = �(yf (x)) (12)

Hence, the r.h.s of (10) is the average over the data set of the exponential loss L�.

The function � decreases with the margin, thus decreasing L̂� will produce a better
classifier (on the training set). In this sense, L� is an alternative loss function for
classification.

L̂� decreases exponentially with M

For simplicity, we show this in the special case b(x) 2 {±1} for all b 2 B.

Zk =
nX

i=1

wk
i e

��k (yi b
k (xi)) (13)

= e�
k X

i=err

wk
i

| {z }
"k

+e��k X

i=corr

wk
i

| {z }
1�"k

(14)

= e�
k
"k + (1� "k)e��k

(15)

=

s
1� "k

"k
"k +

s
"k

1� "k
(1� "k) = 2

q
(1� "k)"k � (16)

where � < 1 depends on � the maximum error. It follows that

L̂�(f
k) =

kY

k=1

Zk0 �k (17)

The training set error L̂01 decreases exponentially with M

Note that �(z) � 1z<0 for all z (see also figure ??). Therefore

L̂(f k) =
1

N

NX

i=1

1[yi f k (xi)<0] (18)

1

N

NX

i=1

e�yi f
k (xi) = L̂�(f

k) �k (19)

In other words, the training error L̂(f k) is bounded by a decaying exponential.
Moreover, since L̂(f k) 2 {0, 1/N, 2/N, . . . 1}, it follows that after a finite number of

steps, when �k0 < 1/N, the training error will become 0 and the training data will be
perfectly classified!

The test set error and overfitting

I Do NOT take M = k0. The number of steps M for good generalization error is
often much larger than k0 (and sometimes smaller).

I Below is a typical plot of L̂ and L (which can be estimated from an independent
sample) vs the number of boosting iterations.

