

Lecture 4: Combining predictors – Part II

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

November, 2015

Boosting as descent in function space
Boosted predictors are additive models
AdaBoost is steepest descent on training set
A statistical view of boosting

More surrogate losses, more boosting algorithms
Why the e�yf loss? other surrogate losses

Practical remarks and theoretical results
Practicalities
Theoretical results

Extensions of boosting
Boosting for multiclass and ranking
[Multiplicative updates algorithms]

Reading HTF: 15. Random Forests, 16. Ensembles of predictors, 8. Model inference and

averaging, 10. Boosting, Murphy: 16.3, 16.3.1 Generalized Additive models (ignore the

regularization, for ”smoother” read ”minimize loss function”), 16.4.1-5 [and optionally 8] Bosting,

3.2.4 Bayesian model averaging, 16.6.3, 16.6.1 Ensembles of predictors

AdaBoost is steepest descent on training set

We will show that boosting is a form of (stochastic) gradient descent on the surrogate
loss L̂� (we already know from Part I that AdaBoost pushes L̂� asymptotically
towards 0).
Assume we want to minimize the surrogate loss L̂� on the training set. For any finite

D, f and b 2 B a↵ect L̂� only via the N-dimensional vectors of their values on D

(which we will abusively denote by f , b)

f =

2

664

f (x1)
f (x2)
. . .

f (xN)

3

775 b =

2

664

b(x1)
b(x2)
. . .

b(xN)

3

775 (4)

Thus, L̂�(f) is a function of N variables, with partial derivatives

@L̂�
@f (xi)

=
@

@f (xi)

"
1

N

NX

i=1

�(y i f (xi))

#
=

1

N
yi�0(y i f (xi)) = �

1

N
yi e�y i f (xi), (5)

since �0(z) = �e�z . Imagine a boosting step as trying to find a change �b in f which
minimizes the loss L̂�(f + �b). This minimization is equivalent to maximizing the

decrease in loss L̂�(f)� L̂�(f + �b).

The direction of descent

The change in L� along “direction” b with step size � is approximately

L̂�(f)�L̂�(f+�b) ⇡ �

⇣
rfL̂�(f)

⌘T
(�b) =

X

i

✓
1

N
yi e�y i f (xi)

◆
(�b(xi))

�
/

X

i

y i b(xi)wi

(6)

(denoting/recalling wi / e�yi f (x
i)).

The direction of steepest descent b is therefore the maximizer of

argmax
b2B

X

i

wi yi b(x
i) (7)

where in the sum on the r.h.s we recognize the r of AdaBoost.

I If b(xi) = ±1 values, then 1� yi b(xi) = 1[i error], and maximizing (7) is the same

as minimizing the weighted training error L̂w01.

I If b takes real values, then yi b(xi) is the margin of example i , and maximizing
(7) is a natural objectiv for many training algorithm. Exercise Can you find examples

of algorithms/predictors which do/don’t maximize the loss in (7)?

More generally (we will use this later), the direction b maximizes

X

i

yi b(x
i)[��0(yi f (x

i))] (8)

Finding the direction b is equivalent with step 1 of the AdaBoost algorithm, training
a weak classifier on the weighted data. The resulting b can be seen as the best
approximate of the gradient of L� in B.

The line minimization

Now let us do line minimization: find the optimal step size � in direction b. For this
we take the derivative of L̂�(f + �b) w.r.t � and set it to 0.

dL̂�(f + �b)

d�
=

X

i

yi b(x
i)�0(yi f (x

i)) = �

X

i

yi b(x
i)e�yi f (x

i)��yi b(x
i) (9)

� is the (unique) root of

X

i

wi yi b(x
i)e��yi b(x

i) = 0 (10)

If • b(x) 2 {�1, 1} then line optimization gives �k from AdaBoost
• b(x) 2 [�1, 1] then line optimization gives �k from AdaBoost approximately
• b(x) 2 (�1,1) then � amounts to a rescaling of b and is redundant.

Calculating �k
for binary b’s

Assume b(x) 2 {±1}.
In this case y i b(xi) = ±1 and we obtain

dL̂�(f + �b)

d�
=

X

i corr

wi e
��

�

X

i err

wi e
� = 0 (11)

0 = (1�

X

i err

wi)� (
X

i err

wi)

| {z }
"k

e2� (12)

� =
1

2
ln

1� "k

"k
(13)

This is the �k coe�cient of step 4 of AdaBoost

Hence, the AdaBoost algorithm can be seen as minimizing the loss L�(f) by
steepest descent in the function space spanB.

RealAdaBoost

The third case corresponds to the RealAdaBoost in the FHT variant, described
here for completeness
Real AdaBoost Algorithm (in the FHT variant)

Assume B contains real-valued functions
Input M, labeled training set D

Initialize f = 0
w1
i = 1

N weight of datapoint xi

for k = 1, 2, . . .M
“learn classifier for D with weights wk

) bk”

compute new weights wk+1
i = wk

i e
�y i bk (xi) and normalize them to sum to 1

Output f (x) =
PM

k=1 b
k (x)

A statistical view of boosting

It has been shown [Friedman et al., 1999] (FHT) that boosting can also be seen as
noisy gradient descent in function space when we replace the finite training set with
the true data distribution. The loss function and gradient can be given a probabilistic
interpretation. This point of view is useful in two ways:

1. It shows that boosting is asymptotically minimizing a reasonable loss function, so
that we can expect the performace/and algorithm behavior on finite samples to
be a good predictor on its behaviour with much larger samples.

2. It is an interpretation that allows on to create a very large variety of boosting
algorithms, like the LogitBost, Gentle AdaBoost and GradientBoost,
presented hereafter.

Assume

I we do boosting “at the distribution level”, i.e using PXY instead of the empirical
distribution given by D.

I The loss function is L�(f) = E [e�yf (x)].
The notation E [] denotes expectation w.r.t the joint PXY distribution.

I learning a classifier means “find the best possible minimizer to L�(f)”

Is L� a good loss?

Proposition

Denote px = PXY (y = 1|x). The loss L�(f) is minimized by

f ⇤(x) =
1

2
ln

PXY (y = 1|x)

PXY (y = �1|x)
=

1

2
ln

px
1� px

And px = ef (x)

ef (x)+e�f (x) the logistic function.

Exercise Does the expresion of px look familiar? What is the connection?

Proof Since we are minimizing over all possible f ’s with no restrictions, we can
minimize separately for every f (x). Hence, let x be fixed

EPY |X=x
[e�yf (x)] = P(y = 1|x)e�f (x) + P(y = �1|x)ef (x)

and the gradient is

@E [e�yf (x)
|x]

@f (x)
= �P(y = 1|x)e�f (x) + P(y = �1|x)ef (x)

By setting this to 0 the result follows. ⇤

In summary f ⇤ is the Bayes optimal predictor for L�. But by the Proposition, f ⇤ is
also Bayes optimal for L01. (Good!)

Steepest descent on L�(f) is (like) RealAdaboost

Proposition

The Real AdaBoost (with “learn a classifier” defined at the distribution level) fits
an additive logistic regression model f by iterative descent on L�(f).

Proof The proof is similar to that for the training set case.
Suppose we have a current estimate f (x) and seek to improve it by minimizing
L�(f + b) over b. In the proof we assume that b is an arbitrary function, while in
practice b will be chosen to best approximate the ideal f within the class B.
Denote by px = P[y = 1|x] (the true value) and by p̂x the “estimate”

p̂x =
ef (x)

ef (x) + e�f (x)
(14)

Assume again x is fixed. Then,

L�(f + b) = E [e�yf (x)�yb(x)]

= e�f (x)e�b(x)px + (1� px)e
f (x)eb(x)

Taking the derivative and setting it to 0 we obtain the new step:

b(x) =
1

2
ln

pxe�f (x)

(1� px)ef (x)
=

1

2


ln

px
1� px

� ln
p̂x

1� p̂x

�
(15)

Note that if one could exactly obtain the b prescribed by (15) the iteration would not
be necessary.

(Proof, continued)
More interesting than the exact form of b above is the optimization problem that
leads to it.
Denote w(x , y) = e�yf (x). Then, b is the solution of

b = argmin
b2B

EPXY w(X ,Y)[e
�Yb] (16)

where PXYw(X ,Y) denotes the (unnormalized) twisted distribution obtained by
multiplying the original data distribution with w(x , y). (Of course, one may have to
put some restrictions on PXY and B in order to obtain a proper distribution.) Finally,
note that the new f is f + b and the new weights are w(x , y)e�yb(x) which finishes
the proof.
Hence, the Real AdaBoost algorithm can be seen as a form of “noisy gradient”
algorithm at the distribution level. (Note that the minimization in equation (16) is
over both direction and scale of f .)

Why the e�yf
loss? and other L� losss

I We saw that L� is statistically motivated. Now we will see that it is
computationally motivated as well.

I Recall: The “true” classification loss L01 is nonsmooth (has 0/no derivatives),
non-convex. For training, one uses surrogate losses.

I Want surrogate L to have the following properties
I �(z) is an upper bound of the 0–1 loss
I �(z) is smooth (has continuous derivatives of any order if f has them); (this lets us use

continuous optimization techniques to fit the classifier)
I �(z) is convex (this leads to global optimization, which has been recognized as

beneficial in practice; it also allows to prove bounds, rates of convergence and so on)
I �(z) is monothone (decreasing) (thus, when z > 0, driving the margins to increase

even if the classification is correct).

These properties are satisfied by Lexp(z) = e�z

Surrogate losses and boosting algorithms

A cornucopia of loss functions

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

yF

C
os

t

0−1 cost
exp(−yF)
−log(likelihood)
(yF−1)2

(sometimes good to have L(z) decrease for all

z < 0, and sometimes bad – causes overfitting)

. . . and of boosting algorithms

I GentleAdaBoost: approx Newton on
Lexp

I Least-SquaresBoost: many
operations in closed form

I LogitBoost Llogit(z) = ln(1 + e�z)
slower (almost linear) decrease for
z ⌧ 0

I AnyBoost, GradientBoost work
with any L

GradientBoost

GradientBoost Algorithm
Given B contains real-valued functions, loss L di↵erentiable
Input M, labeled training set D

Initialize f 0(x) = �0 = argmin�2R L̂(�)
for k = 0, 1, 2, . . .M � 1

1. compute ri = �y i�0(y i f (xi))
2. fit bk (x) to outputs ri
3. find �k = argmin�2R L̂(f k + �bk) (univariate optimization)
update f k+1(x) = f k (x) + �kbk (x)

Ouput f M(x)

I Can be used for either classification or regression

I Works with any L

I If L convex, step 3 is convex optimization (e�cient)

I Proposed first as AnyBoost, later specialized for B =decision/regression trees,
with other tweaks and new name GradientBoost

I When B =CART
I step 3 optimizes over every leaf separately
I depth of trees J represents maximum number of interactions in f ; should not be too

large (B must be weak)

Practical aspects

Overfitting in noise When the classes overlap much (many examples in D

hard/impossible to classify correctly) boosting algorithms tend to focus too much on
the hard examples, at the expense of overall classification accuracy. The same
happens for outliers. Observe also that the loss function(s) in the previous figure,
which penalize more as the margin becomes more negative.
Choice of features Often times, the base class B consists of function of the form
b(x) = xj � a, which perform a split on coordinate xj at point xj = a. They have the
advantage that they can be learned and evaluated extremely fast. One can also
augment the coordinate vector x with functions of the coordinates (e.g.
x ! [x1 . . . xd x1x2 x1x3 . . .]) essentially creating a large set of features, which
corresponds to finite but very large B. In such a situation, the number of features d
can easily be larger than M the number of b’s in the final f . Thus, boosting will be
implicitly performing a feature selection task.

When to stop boosting?

The idea of Cross-Validation (CV) is to use an idependent sample from PXY , denoted
D

0 and called the validation set to estimate the expected loss L01(f). When
overfitting starts, L01(f k) will start increasing with k. Boosting is the stopped at the
value M that minimizes L̂01(bk ;D0) (denoted Lcv below to simplify notation)
AdaBoost with Cross-Validation

Given Training set D of size N, validation set D of size N0, base classifier B
Initialize

1. while LCV decreases (but for at least 1 step)
I do a round of boosting on D
I for i 0 = 1 : N0 compute f (xi0) f (xi0) + �kbk (xi0)
I compute LCV

01 = 1
N0

P
i0 1[yi0 f (xi0)<0]

+

STAT 535+LPL2019

Marina Meila
University of Washington

Double Descent

Beyond the Bias-
Variance trade-off

+
What is observed

n  Classical regime p < N

n  Modern/Deep Learning/High dimensional regime N > n
n  Think N fixed, p increases, gamma=p/N
n  Training error = 0 (interpolation)
n  Test error decreases with p (or gamma)

Double descent

G
en

er
al

iz
at

io
n

er
ro

r

Belkin, Hsu, Ma, Mandal 2018

+
What is observed

n  Double descent curves for the generalization error
n  Random Fourier Features (RFF)
n  ReLU 2 layer networks (with random first layer weights)
n  Random Forests, l2-Adaboost
n  Linear regression

n  With and without noise

Belkin, Hsu, Ma, Mandal 2018

+
RFF

+
Theorem

+
Main intuition [Belkin et al.]

n  The target function h* is (mostly) smooth
n  i.e. ||h*||RKHS is small

n  p > N, no noise, hence hp interpolates data

n  Train to minimize||hp|| subject to 0 training error

n  Then ||hp|| will decrease with p!

+
Random Fourier Features (RFF)

n  RFF à Hinfinity

+
Boosted decision trees

