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Variance trade-off 
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What is observed 

n  Classical regime p < N 

n  Modern/Deep Learning/High dimensional regime N > n 
n  Think N fixed, p increases,  gamma=p/N 
n  Training error = 0 (interpolation) 
n  Test error decreases with p (or gamma) 
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Belkin, Hsu, Ma, Mandal 2018 
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Main intuition [Belkin et al.] 

n  The target function h* is (mostly) smooth 
n  i.e. ||h*||RKHS is small 

n  p > N, no noise, hence hp interpolates data 

n  Train to minimize||hp|| subject to 0 training error 

n  Then ||hp||  will decrease with p! 
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Linear regression 
[Hastie, Montanari, Rosset, 
Tibshirani 2019] 

n  Linear, nonlinear features 
behave the same way 

n  Model correct, misspecified 

n  Noise level sigma affects 
asymptotic error 

n  and optimal N/n 

n  Double descent is not 
regularization 
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n  More refined analysis includes noise, non-linearity, data dimension n,  ridge regularization 
lambda [Mei, Montanari 2019] 

n  When is global minimum in overparametrized regime? 

n  Enough data N/n > 1 

n  lambda à 0 ( or min-norm LS) 

n  p >> N   

n  SNR || beta ||/noise > 1 

n  Bias, Variance strictly decreasing with p/N to > 0 limit   



CSE 547/STAT 548
Non-linear dimension reduction: an introduction

Marina Meilă
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Outline

1 What is manifold learning good for?

2 Manifolds, Coordinate Charts and Smooth Embeddings

3 Non-linear dimension reduction algorithms
Local PCA
PCA, Kernel PCA, MDS recap
Principal Curves and Surfaces (PCS)
Embedding algorithms

4 Metric preserving manifold learning – Riemannian manifolds basics
Metric Manifold Learning – Intuition
Mathematical defihitons
Estimating the Riemannian metric

5 Choice of neighborhood radius
What graph? Radius-neighbors vs. k nearest-neighbors
What neighborhood radius/kernel bandwidth?
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What is manifold learning good for?

Who needs manifold learning?

What is PCA good for?
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What is manifold learning good for?

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

www.sdss.org

www.sdss.org

Preprocessed by Jacob VanderPlas and Grace Telford

n = 675, 000 spectra ⇥D = 3750 dimensions

embedding by James McQueen
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What is manifold learning good for?

Molecular configurations

aspirin molecule Data from Molecular Dynamics (MD) simulations of small
molecules by [Chmiela et al. 2016]

n ⇡ 200, 000 configurations ⇥D ⇠ 20� 60 dimensions
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What is manifold learning good for?

When to do (non-linear) dimension reduction

n = 698 gray images of faces in

D = 64 ⇥ 64 dimensions

head moves up/down and
right/left
With only two degrees of
freedom, the faces define a 2D
manifold in the space of all
64⇥ 64 gray images

high-dimensional data p 2 RD , D = 64⇥ 64
can be described by a small number d of continuous parameters
large sample size n
understanding more important than prediction
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Metric preserving manifold learning – Riemannian manifolds basics Mathematical defihitons

G for Sculpture Faces

n = 698 gray images of faces in D = 64 ⇥ 64 dimensions

head moves up/down and right/left

LTSA Algoritm
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Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

Corrections for 3 embeddings of the same data

Isomap LTSA

Laplacian Eigenmaps
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Non-linear dimension reduction algorithms Embedding algorithms

Isomap vs. Di↵usion Maps

Isomap

Preserves geodesic distances
but only when M is flat and “data” convex

Computes all-pairs shortest paths O(n3)
Stores/processes dense matrix

Di↵usionMap

Distorts geodesic distances
Computes only distances to nearest
neighbors O(n1+✏)
Stores/processes sparse matrix

t-SNE, UMAP visualization algorithms
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Metric preserving manifold learning – Riemannian manifolds basics Metric Manifold Learning – Intuition

Metric Manifold Learning

Wanted

eliminate distortions for any “well-behaved” M

and any any “well-behaved” embedding �(M)
in a tractable and statistically grounded way

Idea

Given data D ⇢ M, some embedding �(D) that preserves topology
(true in many cases)

Estimate distortion of � and correct it!
The correction is called the pushforward Riemannian Metric g
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The Chinese Restaurant Process

Dirichlet Process Mixture



The Chinese Restaurant Process

I Given parameters ↵ > 0,G0, with G0 a continuous measure on measurable space

(⇥,B).
I Assume we already have samples ✓1:n 2 ⇥.

I The probability of ✓n+1 is then

✓n+1 | ✓1:n ⇠
KX

k=1

K

n + ↵
�✓k +

↵

n + ↵
G0. (1)

In the above, K represents the number of distinct values among the n samples

✓1:n.

I This defines a Chinese Restaurant Process (CRP). It is easy to see that the

process is exchangeable.

I One can also prove that for n ! 1, ✓1:n ! G where G ⇠ DP(↵,G0).





Dirichlet Process

I A Dirichlet Process (DP) is distribution over measures.

I Let (⇥,B), ↵,G0 be as above.

I We say that the random function G is drawn from DP(↵,G0) i↵

for any partition B1:K ⇢ B of ⇥,G(B1:K ) ⇠ Dirichlet(↵G0(B1:K )). (2)



Dirichlet Process Mixture

I Given: DP(↵,G0), family of distributions {f✓} on X .

I For i = 1, 2, . . . n

✓i ⇠ CRP(↵,G0, ✓1:i�1) (3)

xi ⇠ f✓i (4)



Estimation of DP Mixture by Gibbs sampling

Input ↵,G0, {f }, D = {x1, . . . xn} ✓ X
State cluster assignments ci , i = 1 : n,

parameters ✓k for all distinct k

Iterate 1. for i = 1 : n(reassign data to clusters)

1.1 if nci = 1 delete this cluster and its ✓ci
1.2 resample ci by

ci =

(
existing k w.p / nk

n�1+↵ f (xi , ✓k )

new cluster w.p ↵
n�1+↵

R
f (xi , ✓)G0(✓)d✓

(5)

1.3 if ci is new label, sample a new ✓ci from f✓ G0(✓ )

2. (resample cluster parameters)

for k 2 {c1:n}
2.1 sample ✓k from posterior f✓k / G0(✓)

Q
i2Ck f (xi ,✓)

this can be computed in closed form if G0 is conjugate prior

Output a state with high posterior


