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Theorem 1. Fiz any h™ € H.,. Let (z1,y1),..., (zn, Yn) be independent and identically distributed
random variables, where x; is drawn uniformly at random from a compact cubﬂ Q c RY and

Yyi = h‘!a:i) for all i. There exists absolute constants A, B > 0 such that, for any interpolating
h € Hx (i.e., h(z;) = y; for all i), so that with high probability
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Main intuition [Belkin et al.]
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\ = = N=40 RelLU features
\ —— N=4000 ReLU features
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m The target function h* is (mostly) smooth
l.e. | |h*| | ggusis small

m p > N, no noise, hence hp interpolates data
= Train to minimize | [h,| | subject to O training error

m Then | |h, || will decrease with p!



Theorem |I

Theorem 1. Fiz any h™ € H.,. Let (z1,y1),...,(Zn,yn) be independent and identically distributed
random variables, where x; is drawn uniformly at random from a compact cubcEl Q ¢ RY, and
yi = h*(zi) for all i. There exists absolute constants A, B > 0 such that, for any interpolating
h € Ha (i.e., h(x;) = y; for all i), so that with high probability

sup |h(z) — h*(z)| < Ae” B/ 8™ (|| B2 5, + [|Ala..) -
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o 4 ' Min-norm LS, SNR=1
Min-norm LS, SNR=5
Min-norm LS, misspecified
Optimal ridge, misspecified

Linear regression.. S [ b
[Hastie, Montanari, Rosset, 7oty
Tibshirani 2019] |
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Figure 1: Asymptotic risk curves for the linear feature model, as a function of the limiting aspect ratio +y. The risks for min-norm
least squares, when SNR = 1 and SNR = 5, are plotted in black and red, respectively. These two match for y < 1 but differ for
7 > 1. The null risks for SNR = 1 and SNR = 5 are marked by the dotted black and red lines, respectively. The risk for the case of
a misspecified model (with significant approximation bias, @ = 1.5 in (13)), when SNR = 5, is plotted in green. Optimally-tuned
(equivalently, CV-tuned) ridge regression, in the same misspecified setup, has risk plotted in blue. The points denote finite-sample
risks, with n = 200, p = [7yn], across various values of y, computed from features X having i.i.d. N'(0, 1) entries. Meanwhile, the
“x" pomts mark finite-sample risks for a nonlinear feature model, with n = 200, p = [yn], d = 100, and X = @(ZW"), where
Z hasiid. N(0,1) entries, W has i.i.d. N(0,1/d) entries, and ¢(t) = a(|t| — b) is a “purely nonlinear” activation function, for
constants a, b. The theory predicts that this nonlinear risk should converge to the linear risk with p features (regardless of d). The
empirical agreement between these two—and the agreement in finite-sample and asymptotic risks—is striking.
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More refined analysis includes noise, non-linearity, data dimension n, ridge regularization

lambda [Mei, Montanari 2019]
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When is global minimum in overparametrized regime?

Enough data N/n > 1
lambda = 0 ( or min-norm LS)
p>>N

SNR | | beta | |/noise > 1

Bias, Variance strictly decreasing with p/N to > 0 limit
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What is manifold learning good for?
g8
© Manifolds, Coordinate Charts and Smooth Embeddings

© Non-linear dimension reduction algorithms
@ Local PCA
o PCA, Kernel PCA, MDS recap
@ Principal Curves and Surfaces (PCS)
o Embedding algorithms

@ Metric preserving manifold learning — Riemannian manifolds basics
@ Metric Manifold Learning — Intuition
@ Mathematical defihitons
@ Estimating the Riemannian metric

© Choice of neighborhood radius
o What graph? Radius-neighbors vs. k nearest-neighbors
@ What neighborhood radius/kernel bandwidth?

Marina Meil3 (Statistics) Manifold Learning Intro January 2022 2/71
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What is manifold learning good for?

Who needs manifold learning?

ML

o What is|PCA good for?
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Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

@ Preprocessed by Jacob VanderPlas and Grace Telford
@ n = 675,000 spectra x D = 3750 dimensions

4000 5000 6000 7000 8000 9000
Wavelength (Angstroms)
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What is manifold lea

Molecular configurations

aspirin molecule o Data from Molecular Dynamics (MD) simulations of small

molecules by [Chmiela et al. 2016]
@ n = 200,000 configurations x D ~ 20 — 60 dimensions

aspirin3,3 vs 8.2

stable meta-stable

transition

Statistics) Manifold Learning Intro January 2022 5/71
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What is manifold learning good for?

b3

When to do (non-linear) dimension reduction Q 19

@ n = 698 gray images of faces in
D = 64 x 64 dimensions

o head moves up/down and
right/left

o With only two degrees of
freedom, the faces define a 2D
manifold in the space of all
64 X 64 gray images
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Metric preserving manifold learning — Riemannian manifolds basics [EVEVGENENIEREIGE

G for Sculpture Faces

@ n = 698 gray images of faces in D = 64 X 64 dimensions
@ head moves up/down and right/left

Marina Meild (Statistics) Manifold Learning Intro January 2022 51/71



Metric preserving manifold learning — Riemannian manifolds basics VE{ISNVERTEINREEIGIT-E LN

Corrections for 3 embeddings of the same data
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Laplacian Eigenmaps
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Non-linear dimension reduction algorithms [EISNSSCRTEE R

Isomap vs. Diffusion Maps

Isoma DiffusionMap W %MW
@ Preserves geodesic distances o Distorts geodesic distances Lo
o but only when M is flat and “data” convex o Computes only distances to nearest
neighbors O(nlt€)
o Stores/processes sparse matrix

LTSA

—_—

o Computes all-pairs shortest paths O(n3)
@ Stores/processes dense matrix

o t-SNE, UMAP visualization algorithms

January 2022 35/71

Marina Meild (Statistics) Manifold Learning Intro



Metric preserving manifold learning — Riemannian manifolds basics VE{ISNVERTEINREEIGIT-E LN

Metric Manifold Learning

Wanted
o eliminate distortions for any “well-behaved” M
and any any “well-behaved” embedding ¢(M)
@ in a tractable and statistically grounded way

Idea

Given data D C M, some embedding ¢(D) that preserves topology
(true in many cases)

o Estimate distortion of ¢ and correct it! (m P'ua./mxt QCC‘\d'L)

@ The correction is called the pushforward Riemannian Metric g

Marina Meild (Statistics) Manifold Learning Intro January 2022 44 /71
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Lecture 14: Dirichlet Process Mixtures in a nutshell

Marina Meila
mmp@stat.washington.edu
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o The Chinese Restaurant Process —» 9,(/!\1,4«0"'“ W

Dirichlet Process Mixture



The Chinese Restaurant Process

> Given parameters o > 0, Gp, with Gp a continuous measure on measurable space
(e, B).

> Assume we already have samples 0., € ©.

> The probability of 0,11 is then

Ko e
001110 LAl Y G 1
n}1| 1:nNZn+O/ 9k+n+0/ 0- ()
r . ,

In the above, K represents the number of distinct values among the n samples

b Note: all diskind 0'S anl Jonuld from Go!
> This defines a Chinese Restaurant Process (CRP). It is easy to see that the

process is exchangeable. > Uleelihoad  guvariant +o erauming 1:n

> One can also prove that for n — oo, 61., — G where G ~ DP(a, Gp).

Xi~ Pe,
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Dirichlet Process

> A Dirichlet Process (DP) is distribution over measures.
> Let (©,8), o, Gy be as above.
» We say that the random function G is drawn from DP(«, Go) iff

for any partition By.x C B of ©, G(By.x) ~ Dirichlet(aGo(Bi.k)). (2)



Dirichlet Process Mixture

> Given: DP(a, Gp), family of distributions {fy} on X.
» Fori=1,2,...n

0; ~ C:‘_\’P(OL7 Go,el;[—l)

X ~ fg.

i

3)
4)



Estimation of DP Mixture by Gibbs sampling

Input o, Go, {f}, D = {x1,... xn} C X
State cluster assignments ¢;, i = 1: n,
parameters 6, for all distinct k

Iterate 1. for i = 1: n(reassign data to clusters)
1.1 if ne; = 1 delete this cluster and its 05’.
1.2 resample ¢; by

. = existingk w.p o n_"ﬁf(x,—, 0)
! new cluster  w.p =3~ [ f(x;, 0)Go(0)d0
1.3 if ¢; is new label, sample a new 0, from fy Go(6)

2. (resample cluster parameters)
for k € {ci.n}
2.1 sample 0 from posterior fy, o Go(0) Hr’eCkr'(x- 0)
s

this can be computed in closed form if Gy is conjugate prior

Output a state with high posterior

©)



