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Nearest-Neighbor predictors

The Nearest-Neighbor predictor

1-Nearest Neighbor The label of a point x is assigned as follows:

1 find the example xi
that is nearest to x in D (in Euclidean distance)

2 assign x the label y i
, i.e.

ŷ(x) = y i

K-Nearest Neighbor (with K = 3, 5 or larger)

1 find the K nearest neighbors of x in D: xi1,...iK

2 for classification f (x) = the most frequent label among the K neighbors

(well suited for multiclass)

for regression f (x) =
1

K

P
i neighbor of x y i = mean of neighbors’ labels

No parameters to estimate!

No training!

But all data must be stored (also called memory-based learning)
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Kernel predictors

Kernel regression and classification

Like the K -nearest neighbor but with “smoothed” neighborhoods

The predictor

f (x) =

nX

i=1

�i b(x , x
i
)y i

(1)

where �i are coe�cients

Intuition: center a “bell-shaped” kernel function b on each data point, and obtain the

prediction f (x) as a weighted sum of the values y i , where the weights are �i b(x , xi )
Requirements for a kernel function b(x , x 0)

1 non-negativity

2 symmetry in the arguments x, x0

3 optional: radial symmetry, bounded support, smoothness

A typical kernel function is the Gaussian kernel (or Radial Basis Function (RBF))

b(z) / e�z2/2
(2)

bh(x , x
0
) / e

� ||x�x0||2

2h2 with h = the kernel width (3)
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Kernel predictors

Regression example

A special case in wide use is the Nadaraya-Watson regressor

f (x) =

Pn
i=1

b
⇣

||x�xi ||
h

⌘
y i

Pn
i=1

b
⇣

||x�xi ||
h

⌘ . (4)

In this regressor, f (x) is always a convex combination of the y i ’s, and the weigths are

proportional to bh(x , xi ).
The Nadaraya-Watson regressor is biased if the density of PX varies around x .
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Kernel predictors

An example: noisy data from a parabola
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Kernel predictors

Local Linear Regression

To correct for the bias (to first order) one can estimate a regression line around x .

1 Given query point x
2 Compute kernel bh(x , xi ) = wi for all i = 1, . . .N
3 Solve weighted regression min�,�0

Pd
i=1

wi
�
y i � �T xi � �0

�2
to obtain �,�0

( �,�0 depend on x through wi )

4 Calculate f (x) = �T x + �0

Exercise Show that Nadaraya-Watson solves a local linear regression with fixed � = 0
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Kernel predictors

Kernel binary classifiers

Obtained from Nadaraya-Watson by setting y i to ±1.

Note that the classifier can be written as the di↵erence of two non-negative functions

f (x) /
X

i :y i=1

b

✓
||x � xi ||

h

◆
�

X

i :y i=�1

b

✓
||x � xi ||

h

◆
. (5)
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An elementary analysis of Kernel Regression

Kernel regression by Nadaraya-Watson

ŷ(x) =

Pn
i=1

b
⇣

||x�xi ||
h

⌘
y i

Pn
i=1

b
⇣

||x�xi ||
h

⌘ (6)

Let wi =

b

✓
||x�xi ||

h

◆

Pn
i0=1

b

✓
||x�xi

0 ||
h

◆ .

Assumptions

A0 For simplicity, in this analysis we assume x 2 R.
A1 There is a true smooth1 function f (x) so that

y = f (x) + ", (7)

where " is sampled independently for each x from a distribution P", with EP" ["] = 0,

VarP" (") = �2.

A2 The kernel b(z) is smooth,
R
R b(z)dz = 1,

R
R zb(z) = 0, and we denote

�2

b =
R
R z2b(z)dz, �2

b =
R
R b2(z)dz.

In this first analysis, we consider that the values x , x1:N are fixed; hence, the randomness is

only in "1:N .

1
with continuous derivatives up to order 2
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An elementary analysis of Kernel Regression

Expectation of ŷ(x) – a simple analysis

Expanding f in Taylor series around x we obtain

f (xi ) = f (x) + f 0(x)(xi � x) +
f 00(x)

2
(xi � x)2 + o((xi � x)2) (8)

We also have

y i
= f (xi ) + "i . (9)

We now write the expectation of ŷ(x) from (6), replacing in it y i and f (xi ) as above. What we

would like to happen is that this expectation equals f (x). Let us see if this is the case.

EPn
"
[ŷ(x)] = EPn

"

"
nX

i=1

wiy
i

#
= EPn

"

"
nX

i=1

wi

⇣
f (xi ) + "i

⌘#
(10)

=

nX

i=1

wi f (x) +
nX

i=1

wi f
0
(x)(xi � x) +

nX

i=1

wi
f 00(x)

2
(xi � x)2 + EPn

"

"
nX

i=1

wi"
i

#

| {z }
=0]

(11)

= f (x) + f 0(x)
nX

i=1

wi (x
i � x) +

f 00(x)

2

nX

i=1

wi (x
i � x)2

| {z }
bias

(12)

In the above, the expressions in red depend of f and x , those in blue depend on x1:n.
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An elementary analysis of Kernel Regression

Qualitative analysis of the bias terms

The first order term f 0(x)
Pn

i=1
wi (xi � x) is responsible for border e↵ects.

The second order term smooths out sharp peaks and valleys.
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Bias, Variance and h for x 2 R

Bias, Variance and h for x 2 R

2

The bias of ŷ at x is defined as EPn
X
EPn

"
[ŷ(x)� f (x)].

EPn
X
EPn

"
[ŷ(x)� f (x)] = h2�2

b

✓
f 0(x)p0X (x)

pX (x)
+

f 00(x)

2

◆
+ o(h2) (13)

The variance ŷ at x is defined as VarPn
X
Pn
"
(ŷ(x)).

VarPn
X
Pn
" (ŷ(x)) =

�2

nh
�2

+ o

✓
1

nh

◆
. (14)

The MSE (Mean Squared Error) is defined as EPn
X
EPn

"

h
(ŷ(x)� f (x))2

i
, which equals

MSE(x) = bias
2
+ variance = h4�4

b

✓
f 0(x)p0X (x)

pX (x)
+

f 00(x)

2

◆
+

�2

b

nh
�2

+ . . . (15)

2
After []
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Bias, Variance and h for x 2 R

Optimal selection of h

If the MSE is integrated over R we obtain the MISE=
R
R MSE(x)pX (x)dx .

The kernel width h can be chosen to minimize the MISE, for fixed f , pX and b.
We set to 0 the partial derivative

@MISE

@h
= h3

 !
�
� �

nh2
= 0. (16)

It follows that h5 / 1

n , or

h /
1

n1/5
. (17)

In d dimensions, the optimal h depends on the sample size n as

h /
1

n1/(d+4)
. (18)

The MSE with optimal h decreases as ⇠ 1

n n
1/(d+4)

Compare this with the MSE of the mean of a distribution, which decreases ⇠ 1

n
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