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@ Nearest-Neighbor predictors

© Kernel predictors
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© An elementary analysis of Kernel Regression

© Bias, Variance and h for x € R
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The Nearest-Neighbor predictor

o 1-Nearest Neighbor The label of a point x is assigned as follows:
@ find the example x that is nearest to x in D (in Euclidean distance)
@ assign x the label y', i.e.

i

y(x) =y
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The Nearest-Neighbor predictor

o 1-Nearest Neighbor The label of a point x is assigned as follows:
@ find the example x that is nearest to x in D (in Euclidean distance)
@ assign x the label y', i.e.

i

y(x) =y

o K-Nearest Neighbor (with K = 3,5 or larger)

@ find the K nearest neighbors of x in D: X2+
o for classification f(x) = the most frequent label among the K neighbors
(well suited for multiclass)
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o for regression f(x) = % X b ol y' = mean of neighbors’ labels

I k-NN and Kernel
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The Nearest-Neighbor predictor

o 1-Nearest Neighbor The label of a point x is assigned as follows:
@ find the example x that is nearest to x in D (in Euclidean distance)
@ assign x the label y', i.e.

i

y(x) =y

o K-Nearest Neighbor (with K = 3,5 or larger)

@ find the K nearest neighbors of x in D: X2+
o for classification f(x) = the most frequent label among the K neighbors
(well suited for multiclass)
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o for regression f(x) = % X b ol y' = mean of neighbors’ labels

@ No parameters to estimate!
o No training!
@ But all data must be stored (also called memory-based learning)

I k-NN and Kernel

Marina Meila (UW Statistics) LIl k-NN and Kernel STAT /BIOST 527 Spring 2023



]
]
=]
(34
o0
<
=
=%
(%2}
~
[
2]
[
[%2)
S
]
=
<
-~
(%]

Marina Meila: LIl k-NN and Kernel

Kernel regression and classification

o Like the K-nearest neighbor but with “smoothed” neighborhoods
@ The predictor

f(x) = D Bib(x,x)y’
i=1

where 3; are coefficients

Marina Meila (UW Statistics) LIl k-NN and Kernel STAT /BIOST 527 Spring 2023
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Kernel regression and classification

Like the K-nearest neighbor but with “smoothed” neighborhoods
The predictor

f(x) = > Bib(x,x")y’ 1)
i=1

where 3; are coefficients
o Intuition: center a "bell-shaped” kernel function b on each data point, and obtain the
prediction f(x) as a weighted sum of the values y’, where the weights are 8;b(x, x')
@ Requirements for a kernel function b(x, x")
© non-negativity
@ symmetry in the arguments x, x’
© optional: radial symmetry, bounded support, smoothness

@ A typical kernel function is the Gaussian kernel (or Radial Basis Function (RBF))
b(z) x e %/2 @)
_ =2
bp(x,x") o< e 2 with h = the kernel width 3)
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LIl k-NN and Kernel

Kernels
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Regression example

A special case in wide use is the Nadaraya-Watson regressor

> b(HX;X H) yi
x=x
>y b (Ll
In this regressor, f(x) is always a convex combination of the y''s, and the weigths are

proportional to by(x, x").
The Nadaraya-Watson regressor is biased if the density of Px varies around x.

fx) = (4)
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I k-NN and Kernel

An example: noisy data from a parabola

data
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kernels centered on each xi
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Local Linear Regression

To correct for the bias (to first order) one can estimate a regression line around x.

@ Given query point x

@ Compute kernel by(x,x') = w; forall i=1,...N

© Solve weighted regression ming g, 27:1 w; (yi — BT — 60)2 to obtain 3, Bo
( B, Bo depend on x through w;)

Q Calculate f(x) = B8Tx + Bo

Exercise Show that Nadaraya-Watson solves a local linear regression with fixed 8 = 0
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Kernel binary classifiers

o Obtained from Nadaraya-Watson by setting y’ to +1.
o Note that the classifier can be written as the difference of two non-negative functions

f(x) o ,-:yfz_lb(nx_"XiH) -3 b(w) (5)

iyl=—1
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Kernel regression by Nadaraya-Watson

S b (Hx—hx"u ) W
b () ©

() =

[x=x'|
x=xi" 11\~
=5

Assumptions

Let w; =

AO For simplicity, in this analysis we assume x € R.
Al There is a true smooth! function f(x) so that

y = f(x)+e, (7)
where ¢ is sampled independently for each x from a distribution Pc, with Ep_ [e] =0,
Varp_(e) = o2.

A2 The kernel b(z) is smooth, [ b(z)dz =1, [, zb(z) = 0, and we denote
02 = [p 2°b(z)dz, v2 = [; b*(2)dz.

In this first analysis, we consider that the values x, xI*N are fixed; hence, the randomness is
only in g&N.

Lwith continuous derivatives up to order 2
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Expectation of §(x) — a simple analysis

Expanding f in Taylor series around x we obtain

f(x') = f(x)+ f'(x)(x" — x) + @(X" —x)? + o((x' — x)?) (8)
We also have ) ) )
y'=f(x)+e". (9)

We now write the expectation of y(x) from (6), replacing in it y’ and f(x) as above. What we
would like to happen is that this expectation equals f(x). Let us see if this is the case.

z”: w; (f(xi) + €i>

i=1

Epn [9(x)] = Epn [Z ny'] = Epp (10)

Zw,f(x +Zw,f(x x'— x) +i f” +Epn

Z wie :| (11)

=0]

0+ #60 Ywild =)+ TS (o 2 (12)
i=1 =1

bias

In the above, the expressions in red depend of f and x, those in blue depend on x1".
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Qualitative analysis of the bias terms

o The first order term f’(x) 3.7_; w;(x — x) is responsible for border effects.
@ The second order term smooths out sharp peaks and valleys.
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Bias, Variance and h for x € R

2
The bias of y at x is defined as Epy Epn [y(x) = F(x)].
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' (x)ph (x !
Epn Epn [9(x) — f(x)] = h%i( (P )+ (X)) + o(h?) (13)
X e px(x)
The variance y at x is defined as Varpy pp (P(x))-
Varpn PL(9(x)) = faz +o L (14)
Px"e nh nh) "

The MSE (Mean Squared Error) is defined as Epy Epn [(f/(x) - f(x))2], which equals

£l ’ £ 2 2
MSE(x) = bias? + variance = h402 ( ()P (x) 4 (X)) 4 ’y—ba2 4= (15)
px(x) 2 nh
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Optimal selection of h
If the MSE is integrated over R we obtain the MISE= [, MSE(x)px(x)dx.

MISE(h) = h* <.> + % = 0. (16)

The kernel width h can be chosen to minimize the MISE, for fixed f, px and b.
We set to 0 the partial derivative

e () -0
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It follows that h® o %, or
1

h Y (18)

In d dimensions, the optimal h depends on the sample size n as
h _ 1 19
X (A (19)

The MISE with optimal h decreases as ~ 1nt/(d+4) — %

Compare this with the MSE of the mean of a distribution, which decreases ~ %
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