Lecture II – Nearest Neighbor and Kernel predictors

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

STAT/BIOST 527 Spring 2023 Nearest-Neighbor predictors

Mernel predictors

An elementary analysis of Kernel Regression

a Bias, Variance and **h** for $x \in \mathbb{R}$

LII k-NN and Kernel

The Nearest-Neighbor predictor

- 1-Nearest Neighbor The label of a point x is assigned as follows:
 - **1** find the example x^i that is nearest to x in \mathcal{D} (in Euclidean distance)
 - 2 assign x the label y^i , i.e.

$$\hat{y}(x) = y^i$$

The Nearest-Neighbor predictor

- 1-Nearest Neighbor The label of a point x is assigned as follows:
 - **1** find the example x^i that is nearest to x in \mathcal{D} (in Euclidean distance)
 - 2 assign x the label y^i , i.e.

$$\hat{y}(x) = y^i$$

- K-Nearest Neighbor (with K = 3, 5 or larger)
 - find the K nearest neighbors of x in \mathcal{D} : $x^{i_1, \dots i_K}$
 - for classification f(x) = the most frequent label among the K neighbors (well suited for multiclass)
 - for regression $f(x) = \frac{1}{K} \sum_{i \text{ neighbor of } x} y^i = \text{mean of neighbors' labels}$

The Nearest-Neighbor predictor

- 1-Nearest Neighbor The label of a point x is assigned as follows:
 - **1** find the example x^i that is nearest to x in \mathcal{D} (in Euclidean distance)
 - 2 assign x the label y^i , i.e.

$$\hat{y}(x) = y^i$$

- K-Nearest Neighbor (with K = 3, 5 or larger)
 - **1** find the K nearest neighbors of x in \mathcal{D} : $x^{i_1, \dots i_K}$
 - for classification f(x) = the most frequent label among the K neighbors (well suited for multiclass)
 - for regression $f(x) = \frac{1}{K} \sum_{i \text{ neighbor of } x} y^i = \text{mean of neighbors' labels}$

- No parameters to estimate!
- No training!
- But all data must be stored (also called memory-based learning)

Kernel regression and classification

- Like the K-nearest neighbor but with "smoothed" neighborhoods
- The predictor

$$f(x) = \sum_{i=1}^{n} \beta_i b(x, x^i) y^i \tag{1}$$

where β_i are coefficients

Kernel regression and classification

- Like the K-nearest neighbor but with "smoothed" neighborhoods
- The predictor

$$f(x) = \sum_{i=1}^{n} \beta_i b(x, x^i) y^i$$
 (1)

where β_i are coefficients

- Intuition: center a "bell-shaped" kernel function b on each data point, and obtain the prediction f(x) as a weighted sum of the values y^i , where the weights are $\beta_i b(x, x^i)$
- Requirements for a kernel function b(x, x')
 - non-negativity
 - 2 symmetry in the arguments x, x'
 - optional: radial symmetry, bounded support, smoothness
- A typical kernel function is the Gaussian kernel (or Radial Basis Function (RBF))

$$b(z) \propto e^{-z^2/2} \tag{2}$$

$$b_h(x,x') \propto e^{-\frac{||x-x'||^2}{2h^2}}$$
 with $h =$ the kernel width (3)

Kernels

Regression example

A special case in wide use is the Nadaraya-Watson regressor

$$f(x) = \frac{\sum_{i=1}^{n} b\left(\frac{||x-x^{i}||}{h}\right) y^{i}}{\sum_{i=1}^{n} b\left(\frac{||x-x^{i}||}{h}\right)}.$$
 (4)

In this regressor, f(x) is always a convex combination of the y^i 's, and the weights are proportional to $b_h(x,x^i)$.

The Nadaraya-Watson regressor is biased if the density of P_X varies around x.

An example: noisy data from a parabola

Local Linear Regression

To correct for the bias (to first order) one can estimate a regression line around x.

- Given query point x
- ② Compute kernel $b_h(x, x^i) = w_i$ for all i = 1, ... N
- Solve weighted regression $\min_{\beta,\beta_0} \sum_{i=1}^d w_i \left(y^i \beta^T x^i \beta_0 \right)^2$ to obtain β,β_0 (β,β_0 depend on x through w_i)
- Calculate $f(x) = \beta^T x + \beta_0$

Exercise Show that Nadaraya-Watson solves a local linear regression with fixed $\beta=0$

Kernel binary classifiers

- Obtained from Nadaraya-Watson by setting y^i to ± 1 .
- Note that the classifier can be written as the difference of two non-negative functions

$$f(x) \propto \sum_{i:v^i=1} b\left(\frac{||x-x^i||}{h}\right) - \sum_{i:v^i=-1} b\left(\frac{||x-x^i||}{h}\right). \tag{5}$$

Kernel regression by Nadaraya-Watson

$$\hat{y}(x) = \frac{\sum_{i=1}^{n} b\left(\frac{||x-x^{i}||}{h}\right) y^{i}}{\sum_{i=1}^{n} b\left(\frac{||x-x^{i}||}{h}\right)}$$
(6)

Let $w_i = \frac{b\left(\frac{||x-x^i||}{h}\right)}{\sum_{i'=1}^n b\left(\frac{||x-x^{i'}||}{h}\right)}.$

Assumptions

A0 For simplicity, in this analysis we assume $x \in \mathbb{R}$.

A1 There is a true smooth function f(x) so that

$$y = f(x) + \varepsilon, \tag{7}$$

where ε is sampled independently for each x from a distribution P_{ε} , with $E_{P_{\varepsilon}}[\varepsilon] = 0$, $Var_{P_{\varepsilon}}(\varepsilon) = \sigma^2$.

A2 The kernel b(z) is smooth, $\int_{\mathbb{R}} b(z)dz = 1$, $\int_{\mathbb{R}} zb(z) = 0$, and we denote $\sigma_b^2 = \int_{\mathbb{R}} z^2b(z)dz$, $\gamma_b^2 = \int_{\mathbb{R}} b^2(z)dz$.

In this first analysis, we consider that the values x, $x^{1:N}$ are fixed; hence, the randomness is only in $\varepsilon^{1:N}$.

¹with continuous derivatives up to order 2

Expectation of $\hat{y}(x)$ – a simple analysis

Expanding f in Taylor series around x we obtain

$$f(x^{i}) = f(x) + f'(x)(x^{i} - x) + \frac{f''(x)}{2}(x^{i} - x)^{2} + o((x^{i} - x)^{2})$$
 (8)

We also have

$$y^{i} = f(x^{i}) + \varepsilon^{i}. \tag{9}$$

We now write the expectation of $\hat{y}(x)$ from (6), replacing in it y^i and $f(x^i)$ as above. What we would like to happen is that this expectation equals f(x). Let us see if this is the case.

$$E_{P_{\varepsilon}^{n}}[\hat{y}(x)] = E_{P_{\varepsilon}^{n}}\left[\sum_{i=1}^{n} w_{i} y^{i}\right] = E_{P_{\varepsilon}^{n}}\left[\sum_{i=1}^{n} w_{i} \left(f(x^{i}) + \varepsilon^{i}\right)\right]$$

$$= \sum_{i=1}^{n} w_{i} f(x) + \sum_{i=1}^{n} w_{i} f'(x)(x^{i} - x) + \sum_{i=1}^{n} w_{i} \frac{f''(x)}{2}(x^{i} - x)^{2} + E_{P_{\varepsilon}^{n}}\left[\sum_{i=1}^{n} w_{i} \varepsilon^{i}\right]$$
(10)

$$= f(x) + f'(x) \sum_{i=1}^{n} w_i(x^i - x) + \frac{f''(x)}{2} \sum_{i=1}^{n} w_i(x^i - x)^2$$
 (12)

bias

In the above, the expressions in red depend of f and x, those in blue depend on $x^{1:n}$.

LII k-NN and Kernel STAT/BIOST 527 Spring 2023 Marina Meila (UW Statistics)

Qualitative analysis of the bias terms

- The first order term $f'(x) \sum_{i=1}^{n} w_i(x^i x)$ is responsible for border effects.
- The second order term smooths out sharp peaks and valleys.

Bias, Variance and h for $x \in \mathbb{R}$

The bias of \hat{y} at x is defined as $E_{P_x^n} E_{P_x^n} [\hat{y}(x) - f(x)]$.

$$E_{P_X^n} E_{P_{\varepsilon}^n} [\hat{y}(x) - f(x)] = h^2 \sigma_b^2 \left(\frac{f'(x) p_X'(x)}{p_X(x)} + \frac{f''(x)}{2} \right) + o(h^2)$$
 (13)

The variance \hat{y} at x is defined as $Var_{P_{x}^{n}}P_{x}^{n}(\hat{y}(x))$.

$$Var_{P_{X}^{n}}P_{\varepsilon}^{n}(\hat{y}(x)) = \frac{\gamma^{2}}{nh}\sigma^{2} + o\left(\frac{1}{nh}\right). \tag{14}$$

The MSE (Mean Squared Error) is defined as $E_{P_X^n} E_{P_{\varepsilon}^n} \left[(\hat{y}(x) - f(x))^2 \right]$, which equals

$$MSE(x) = bias^2 + variance = h^4 \sigma_b^4 \left(\frac{f'(x)p_X'(x)}{p_X(x)} + \frac{f''(x)}{2} \right)^2 + \frac{\gamma_b^2}{nh} \sigma^2 + \dots$$
 (15)

²After []

If the MSE is integrated over \mathbb{R} we obtain the MISE= $\int_{\mathbb{R}} MSE(x)p\chi(x)dx$.

The kernel width h can be chosen to minimize the MISE, for fixed f, p_X and b. We set to 0 the partial derivative

$$\frac{\partial MISE}{\partial h} = h^3 \left(\frac{}{nh^2} \right) - \frac{(}{nh^2} = 0. \tag{17}$$

It follows that $h^5 \propto \frac{1}{n}$, or

$$h \propto \frac{1}{n^{1/5}}.\tag{18}$$

In d dimensions, the optimal h depends on the sample size n as

$$h \propto \frac{1}{n^{1/(d+4)}}.\tag{19}$$

The MISE with optimal h decreases as $\sim \frac{1}{n} n^{1/(d+4)} = \frac{1}{n^{1-1/(d+4)}}$ Compare this with the MSE of the mean of a distribution, which decreases $\sim \frac{1}{n}$

Marina Meila (UW Statistics) LII k-NN and Kernel STAT/BIOST 527 Spring 2023