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© Paradigms for clustering

© Methods based on non-parametric density estimation

© Model-based: Dirichlet process mixture models

Reading AoNPS Ch.: —, HTF Ch.: 14.3 Murphy Ch.: 11.[1], 11.2.1-3, 11.3, Ch 25
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What is clustering? Problem and Notation

Informal definition Clustering = Finding groups in data

. Xp} a data set

number of data points

number of clusters (K << n)

.., Ck} a partition of D into disjoint subsets
the label of point i

cost (loss) of A (to be minimized)

Second informal definition Clustering = given n data points, separate them into K

Hard vs. soft clusterings
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o Hard clustering A: an item belongs to only 1 cluster
. i=1:
o Soft clustering v = {vii }—i'k
ki = the degree of membership of point i to cluster k

S =1 foralli

(usually associated with a probabilistic model)
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Clustering Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K, shape of clusters)

o Data = vectors {x;} in R?
Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric ~ Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]
Gaussian blurring mean shift? [hard]
Level sets of distribution [hard]
o Data = similarities between pairs of points [Sj]i j—1.n, Sjj = Sji > 0
Similarity based clustering
Graph partitioning spectral clustering [hard, K fixed, cost based]
typical cuts [hard non-parametric, cost based]
Affinity propagation  [hard/soft non-parametric]
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Classification vs Clustering

Classification Clustering
Cost (or Loss) £ Expectd error many! (probabilistic or not)
Supervised Unsupervised
Generalization Performance on new Performance on current
data is what matters data is what matters
K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!
Stage Mature Still young

of field
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Methods based on non-parametric density estimation

Idea The clusters are the isolated peaks in the (empirical) data density
@ group points by the peak they are under

some outliers possible
K =1 possible(no clusters)

shape and number of clusters K determined by algorithm
structural parameters

o smoothness of the density estimate
o what is a peak

Algorithms

o peak finding algorithms Mean-shift algorithms
o level sets based algorithms

o Nugent-Stuetzle, Support Vector clustering

@ Information Bottleneck ?
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Kernel density estimation

Input o data D C RY
o Kernel function K(z)
e parameter kernel width h (is a smoothness parameter)

utput f(x) a probability density over RY

f(x) = ,,TL;K(X;X[)

o f is sum of Gaussians centered on each x;
o f is smoother (less variation) if h larger
o caveat: dimension d can't be too large
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The kernel function
o Example K(z) = 2 e~1121I°/2 7 € RY is the Gaussian kernel

(27r)d/2
o In general
o K() should represent a density on R?, i.e K(z) > 0 for all z and [ K(z)dz = 1
o K() symmetric around 0, decreasing with ||z||

@ In our case, K must be differentiable
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Mean shift algorithms

Idea find points with Vf(x) =0
Assume K(z) = e*|‘z‘|2/2/\/27r Gaussian kernel

X

Vi) = —— El K=Y 0= x)/h

Local max of f is solution of implicit equation

27:1 XiK( X;X")
i K

—————

the mean shiftm(x)

X =

Algorithm Simple Mean Shift
Input Data D = {x;};—1., kernel K(z), h
Q fori=1:n
O X < X
@ iterate x < m(x) until convergence to m;

@ group points with same m; in a cluster
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Remarks

@ mean shift iteration guaranteed to converge to a max of f
@ computationally expensive
@ a faster variant...

Algorithm Mean Shift (Comaniciu-Meer)
Input Data D = {x;};—1.n, kernel K(z), h
@ select g points {xj}j—1.¢ = Dqg C D
that cover the data well
@ for j € Dy
O X < Xj
@ iterate x < m(x) until convergence to m;
group points in Dy with same m; in a cluster
assign points in D \ Dy to the clusters by the nearest-neighbor method

©0

k(i) = k(argmin ||x; — x;
() (jqu llxi = 1)
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[Supplement: Gaussian blurring mean shift]

Idea

o like Simple Mean Shift but points are shifted to new locations
o the density estimate f changes
@ becomes concentrated around peaks very fast

Algorithm Gaussian Blurrring Mean Shift (GBMS)
Input Data D = {x;},—1.,, Gaussian kernel K(z), h
O lterate until STOP

@ for i =1:n compute m(x;)
@ fori=1:n x + m(x)
Remarks

o all x; converge to a single point
= need to stop before convergence
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Empirical stopping criterion ?

o define ef = ||xf — xl.t_lH the change in x; at t
o define H(e") the entropy of the histogram of {ef}
o STOP when Y7 ; ef/n <tol OR |H(ef) — H(ef~1)| <tol’

Convergence rate If true f Gaussian, convergence is cubic
lIxf = x*[] < Clixf = = x*|I?

very fast!!
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The Nugent-Stuetzle algorithm

Algorithm Nugent-Stuetzle
Input Data D = {x;}i—1.n, kernel K(z)
@ Compute KDE f(x) for chosen h
@ forlevels 0< h < h<...<Il <...<Igr>sup,f(x)
@ find level set L, = {x|f(x) > I} of f

@ if L, disconnected then each connected component is a cluster — (G, 1, G2, . . .

utput clusters {(C,.1, G 2,... Gk, )} r=1:R
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Remarks

every cluster C, x C some cluster C,_; s
therefore output is hierarchical clustering
some levels can be pruned (if no change, i.e. K, = K,_1)
algorithm can be made recursive, i.e. efficient
finding level sets of f tractable only for d = 1,2
for larger d, L = {x; € D|f(x;) > I}
to find connected components
o fori#j€L,
if f(tx; + (1 —t)x;)) > I for t € [0, 1]
then k(i) = k(j)

@ confidence intervals possile by resampling
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Cluster tree with 13 leaves (8 clusters, 5 artifacts)

o
5
=}
o
IS
o 3
e
=}
=}
2
=3 B
8
=4
©
© o
==
8 - s ®
S 2
°
g
<+ = o
=} € o
S £ ¥
=4
g8 °
S S 4
= &
8
S - —e—s0 °
=4
(from ?)

Marina Meila (UW Statistics)

33

L IV NP Clustering

T
1000




Chaudhuri-Dasgupta Algorithm

@ Uses k-nearest neighbor graphs (filtration)
o Parameters k (nearest neigbhors) and « € [1, 2]
o for r >0, G- = (V;, E) with
e x; € V, iff distance to k-nn of x; < r
o (xi,x) € E iff ||x; — xj|| < ar
Consistency Theorem For any e (separation parameter) and & (confidence), o € [v/2,2] (graph
density), if k = Clog?(1/5)%'%"
for any two clusters C, C’ in cluster tree, there exists a level r so that CND, C' ND are
clusters at level r
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The K-nn density estimator

The K-nn density estimator
@ Let B/(x) be the (closed) ball of radius r centered at x
o If |B/(x") ND| = k then p(x’) = —+— & is an estimate of the density at x’
Mwp n
o wy =72 /T(n/2 + 1) is the volume of the unit ball in R”
o intuitively, the ball of radius r contains k/n probability mass
o Note that the density p is not required to integrate to 1
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DBScan

Introduced with no proof, but widely used. Implicitly based on the K-nn estimator
Parameters r radius, m minimum number points

Definitions core Q@ = {x’ € D, with B;(x') N D| > m}

border B = {x/ € D\ Q, so that x' € B,(x)), ¥/ € Q}

outliers (noise) O =D\ (Q U B)

outliers border

Algorithm idea

Construct directed graph G with edges (i, ) where x’ € Q,j € B,(x')

The graph edges between core points are undirected /symmetric, the other are from core
to border

Clusters are determined by the connected components of the graph restricted to Q.

The border points are assigned to a cluster containing x/ so that x' € B.(x/), ¥/ € Q Note
that this assignment is not unique!

Heuristic algorithm estimates r, m
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[Supplement: Chaudhuri-Dasgupta Algorithm]

Consistency Theorem For any e (separation parameter) and § (confidence), a € [v/2, 2] (graph density), if
dl

k = Clog?(1/5) %22

for any two clusters C, C’ in cluster tree, there exists a level r so that C N D, C' N D are clusters at level r

o r depends on X\ ="bridge" between C, C’ (and o > 0 “tube” width)

k .
rdwd)\ = — +...confidence term
n

it follows that the needed sample size n at level A

d d
n=0 (/\62(0'/2)"% = Aé(a/z)dwd)

this sample complexity n is almost tight
for a < /2 sample complexity is exponential in d

o New results [Kent, B. P., Rinaldo, A. and Verstynen, T. 2013]

Remark: algorithm(s) can be applied in any metric space
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[Supplement: Support Vector (SV) clustering]

Idea same as for Nugent-Stuetzle, but use kernelized density estimator instead of KDE

Algorithm SV

Input data D, parameters g kernel width, p € (0,1) proportion of outliers

@ construct a 1-class SVM with parameters q, C = 1/np
this is equivalent to enclosing the data in a sphere in feature space
for any x its distance from center of sphere is

R%(x) = K(x,x) — 2ZajK(X,Xj) + Z K(xi, xj)
J iJ

for x; support vector, R(x;) = R (same for all)
@ for all pairsi,j=1:n
e i,/ in same cluster if segment [i, j] is within sphere with radius R in feature space
o practically, test if R(tx; + (1 — t)x;) < R for t on a grid over [0,1]
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Remarks

/HQ

the kernel used by SV is K(x, x") = e~ dllx—x
g controls boundary smoothness
SV's lie on cluster boundaries, " margin error” points lie outside clusters (are outliers)

SV theory w — % = p for large n
@ hence p controls the proportion of outliers
p, q together control K

p larger, g smaller = K smaller
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The Dirichlet distribution

@ Z c {1:r} a discrete random variable, let 6; = P;(j), j=1,... r
o Multinomial distribution Probability of i.i.d. sample of size N from P,
r
1,...n\ __ ]
P(zb") = 16
j=1
where n; = #the value j is observed, j =1,...r
@ ni., are the sufficient statistics of the data.

@ The Dirichlet distribution is defined over domain of 61 .. ,, with real parameters
Ni,...>0by
F(ZJ H nj =il

D(el,m ri ni,... r)

where [(p) = [ tP~le dLt.
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Dirichlet process mixtures

@ Model-based
generalization of mixture models to

o infinite K
o Bayesian framework

denote 0, = parameters for component fy

assume fi(x) = f(x,0x) € {f(x,0)}

assume prior distributions for parameters go(0)

prior with hyperparameter oo > 0 on the number of clusters
very flexible model

Marina Meila: L IV NP Clustering

Marina Meila (UW Statistics) L IV NP Clustering



Marina Meila: L IV NP Clustering

A sampling model for the data

Example: Gaussian mixtures, d = 1, o, = o fixed
0=p
prior for p is Normal(0, 0(2) I4)
Sampling process
e for i = 1: nsample x;, k(i) as follows
denote {1 : K} the clusters after step i — 1

define nj the size of cluster k after step i — 1
Nk — 9.
k(i) = k W.P 7iva k=1:K o
K+1 o
a4 W.P —i7a

@ if k(i) = K + 1 sample puj = py41 from Normal(0, ag)
@ sample x; from Normal(uk(l-), 02)
@ can be shown that the distribution of xi., is interchangeable (does not depend on data
permutation)
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The hyperparameters

@ o controls spread of centers
o should be large
@ « controls number of cluster centers
o « large = many clusters
@ cluster sizes non-uniform (larger clusters attract more new points)
@ many single point clusters possible

General Dirichlet mixture model

o cluster densities {f(x,0)}

o parameters 6 sampled from prior go(6, 3)
o cluster membership k(i) sampled as in (1)
o x; sampled from f(x, 0y(;))

o Model Hyperparameters a, 8
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Clustering with Dirichlet mixtures

The clustering problem

o, g0, B, {f} given
D given
wanted 61., (not all distinct!)
note:
o 01., determines a hard clustering A
o the posterior of 01., given the data determines a soft clustering via
P(X,' | k) o f f(X,“ak)gk(Qk)ko
Estimating 61., cannot be solved in closed form
Usually solved by MCMC (Markov Chain Monte Carlo) sampling
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Clustering with Dirichlet mixtures via MCMC

MCMC estimation for Dirichlet mixture
Input o, go, B, {f}, D
State cluster assignments k(i), i =1: n,
parameters 6 for all distinct k
erate @ for i = 1: n (reassign data to clusters)

@ remove | from its cluster (hence Y7, n = n — 1)
@ resample k(i) by

k(i) = existingk w.p o< ninﬁf(x,-, 0x)
0 = new cluster  w.p ——fo— [ f(x;, 0)go(0)do
© if k(i) is new label, sample a new 6, ;) oc gof(x;, )
@ for k € {k(1: n)} (resample cluster parameters)
@ sample 0 from posterior gi(0) o< go(0, B) HiGCk f(x;, 0)
gk can be computed in closed form if gy is conjugate prior
utput a state with high posterior
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Summary: Parametric vs. non-parametric

Parametric clustering

@ Optimizes a cost £

@ Most costs are NP-hard to optimize

@ Assumes more detailed knowledge of cluster shapes

o Assumes K known (But there are wrapper methods to select K)
o Gets harder with larger K

@ Older, more used and better studied

Non-parametric clustering

o Variety of paradigms
o density-based methods have no cost function
o (Max Likelihood: non-parametric mixture models)
o Bayesian: Dirichlet Process Mixtures (samples from posterior of k(1 : n), {0x} given D)
@ Do not depend critically on initialization
@ K and outliers selected automatically, naturally
@ Require hyperparameters (= smoothness parameters)
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When to use

o Parametric
o shape of clusters known
o K not too large or known
o clusters of comparable sizes
o Non-parametric (density based)
o shape of clusters arbitrary
K large or many outliers

Ll
o clusters sizes in large range (a few large clusters and many small ones)
L]

dimension d small (except for SV)
o lots of data

@ Dirichlet Process mixtures

o shape of clusters known
o clusters sizes in large range
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Notation

[1x = yl| Euclidean distance for x,y € R?, ||x — y|| = 27:1()9' —¥)?
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Links

o Yee Whye Teh's tutorial on DP Mixtures http://mlg.eng.cam.ac.uk/tutorials/07 /ywt.pdf
o Lecture on exponential family models http:
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