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Lecture V.1 – Build your own RKHS in 4 easy steps
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Outline

1 RKHS – why bother?

2 From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

3 Properties of RKHS’s

Reading AoNPS Ch.: , HTF Ch.:
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RKHS – why bother?

RKHS – why bother?

Practical goal = learning a predictor f : X→ R
If f depends on a kernel K() and we ensure K() � 0, then f will be guaranteed to have
some nice properties and be (statistically) safe to use

RKHS ⇔ K() � 0
So what does RKHS give us?

x ∈ X ↔ φ(x) ∈ H, with φ(x) ≡ Kx () the feature map (1)

f : X→ R non-linear ↔ linear functional f on H ≡ f ∈ H (2)

f (x) ↔ f Tφ(x) (3)

any f ∈ L2(X) ↔ representable in basis [ψ1:∞] induced by K() (4)

and approximation by ψ1:m converges uniformly (5)

How do you obtain such predictor f ?
SVM / Kernel machines (frequentist + regularization)
Gaussian Processes (Bayesian)
Neural Net (NTK)
. . .
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From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

Ingredients

a base space X, which in ML is the input space.
For example Rd , or {x ∈ Rd , ‖x‖ ≤ R}.
a kernel K() over X, that defines a scalar product.

L2(X), the space of functions that have finite 2-norm on X.

L2(X) = {f : X→ R,
∫

X
f 2(x)dx <∞} (6)

A kernel defines a scalar product on X iff it is positive definite in the following sense∫
X
f (x)f (x ′)K(x , x ′)dxdx ′ > 0, for all f 6≡ 0, f ∈ L2(X). (7)

In particular, from (7) it follows that for any set x1:n, the Gram matrix

G =
[
K(x i , x j )

]n
i,j=1

≥ 0. (8)

Exercise Prove this
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L V1 RKHS

From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

Ingredients

Remark 1

Scalar Product

� A scalar product 〈 〉 on X (also called inner product).

〈 〉 : X× X→ R is a scalar product iff it is
1. Symmetric 〈x, x′〉 = 〈x′, x〉.
2. Positive definite 〈x, x〉 > 0 for all x 6= 0.
3. Bilinear (i.e. linear in each argument) 〈αx1 + βx2, x

′〉 = α〈x1, x
′〉 + β〈x2, x

′〉 (and
similarly for second argument). Note that it suffices to be symmetric and linear in first
argument.



M
ar
in
a
M
ei
la
:
L
V
1
R
K
H
S

S
T
A
T
/
B
IO

S
T

5
2
7
S
p
ri
n
g
2
0
2
3

5

From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

The recipe

Given X, kernel K over X
1 The feature map x 7→ Kx () = K(x , )

Every x ∈ X maps to the function Kx : X→ R, defined as Kx (u) = K(x, u) for all u ∈ X.

Hence, each x is also a function in L2(X); we write this X ↪→ L2(X). But the set {Kx , x ∈ X}
has a lot of “holes”, it’s not useful! Must be “filled in”.

2 Start by expanding it into a linear space, the space of all finite sums of Kx ’s.

H0 = span{Kx , x ∈ X} = {
n∑

i=1

αiKx i , for n = 1, 2, . . . , α1:n ∈ R, x1:n ∈ X} (9)

This is still not enough, we would like to include limits of sequences in H0, e.g. infinite
sums. For limits we need a distance.
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L V1 RKHS

From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

The recipe

Remark 2

Complete metric space In a complete space H, if a sequence {fn}∞n=1 has a limit f , then f is also
in H; moreover (and this is the actual definition), if a sequence is Cauchy, meaning that
distance(fn, fm)→ 0 for m, n →∞, then the limit f exists and is in H.

Remark 3

Hilbert space A Hilbert space is an infinite dimensional vector space that has a scalar product
and is complete.



M
ar
in
a
M
ei
la
:
L
V
1
R
K
H
S

S
T
A
T
/
B
IO

S
T

5
2
7
S
p
ri
n
g
2
0
2
3

6

From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

The recipe (2)

3 Define a scalar product 〈 〉H on H0, by means of the kernel K . Let

〈Kx ,Kx′ 〉H = K(x , x ′). (10)

Hence, the scalar product defined by K on X, is transported to H0. This is sufficient to
define the scalar product on all of H0 because for any f , g ∈ H0,

〈f , g〉H = 〈
n∑

i=1

αiKui ,
m∑
j=1

βjKv j 〉H =
n∑

i=1

m∑
j=1

αiβj 〈Kui ,Kv j 〉H (11)

=
n∑

i=1

m∑
j=1

αiβjK(ui , v j ) (12)

Exercise Prove that 〈 〉H is a scalar product.
4 The scalar product 〈 〉H allows us to define a norm

‖f ‖2
H = 〈f , f 〉H. (13)

Now we can complete H0 to H.

Voila! H is your Reproducing Kernel Hilbert Space (RKHS).
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From kernel K() to Reproducing Kernel Hilbert Space (RKHS)

Recipe, summarized

Input X, kernel K
1 Map X ↪→ L2(X) by the feature map x 7→ Kx () = K(x , )
2 Make it a linear space
H0 = span{Kx , x ∈ X} = {

∑n
i=1 αiKx i , for n = 1, 2, . . . , α1:n ∈ R, x1:n ∈ X}

3 Define scalar product 〈 〉H on H0, by 〈Kx ,Kx′ 〉H = K(x , x ′).
4 Complete H0 to H using ‖ ‖H.
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Properties of RKHS’s

The name RKHS explained

Reproducing Kernel Hilbert Space
– means the space of functions has a scalar product and is complete
Reproducing Kernel Hilbert Space
– the scalar product comes from a kernel
Reproducing Kernel Hilbert Space
– in addition, this space has the Reproducing property (coming next!)
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Properties of RKHS’s

The Reproducing Property 〈f ,Kx〉H = f (x)

Let’s prove it. Remember f (x) =
∑n

i=1 aiKui (x) for f ∈ H0, x ∈ X.

〈f ,Kx 〉H =
n∑

i=1

ai 〈Kui ,Kx 〉H (16)

=
n∑

i=1

aiK(ui , x) = f (x) (17)

In other words, if we map x into H by x 7→ Kx and calculate the scalar product with some
f ∈ H, the result is the same as applying f to x ∈ X.
One can say that Kx reproduces x
Or alternatively that f ∈ H, by Riesz’s Theorem, defines the linear functional 〈f , 〉H. This
functional on H reproduces the effect of f on X.
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Properties of RKHS’s

Mercer’s Theorem

Define the transport operator T : L2(X)→H

Tf =

∫
X
f (u)K( , u)du ⇔ Tf (x) =

∫
X
f (u)K(u, x)du (18)

Let {(λi , ψi )}i be the eigenvalue, eigenfunction pairs of T
The Mercer Theorem says that, under certain conditions on X and K , the operator T

1 has a discrete spectrum,
2 is positive semidefinite λi ≥ 0 for i = 1, 2, . . .
3 the eigenfunctions {ψi}∞i=1 form an orthogonal basis for L2(X)
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L V1 RKHS

Properties of RKHS’s

Mercer’s Theorem

Remark 4

(Linear) Operator

� An (linear) operator T is a (linear) function from a space of functions to another.
� For example the derivative maps a function f : R→ R to its derivative f ′; we can write that

derivative :C1(R)→ C0(R) is a linear operator.
� For an operator T and function f , we denote by g = Tf ≡ T (f ), the function resulting from

applying T to f .
� Furthermore, if we calculate this function g at point x, we write g(x) = Tf (x)
� Operators have eigenfunctions and eigenvalues defined as Tψ = λψ for some λ ∈ R
� The set of eigenvalues {λ, such that Tψ = λψfor some ψ} is the spectrum of T .
� The spectrum of an operator is usually more complicated than the spectrumof a matrix; for

example, it can contain continuous intervals, the whole real line, limit points. If the spectrum
contains none of these, i.e. consists of only isolated eigenvalues, we say the spectrum is
discrete.
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Properties of RKHS’s

The feature map revisited

The consequences of this theorem are remarkable. In particular, it lets us express the
kernel itself in the basis of T .

K(x , x ′) =
∞∑
i=1

λiψi (x)ψi (x
′) (19)

Therefore,

K(x , x) =
∞∑
i=1

λiψi (x)2. (20)

From here, it is easy to see that the feature map x 7→ Kx can also be written as

x 7→
[√

λiψi (x)
]∞
i=1

(21)

And finally, the infinite sum converges uniformly

lim
n→∞

sup
x,x′

∣∣∣∣∣K(x , x ′)−
n∑

i=1

λiψi (x)ψi (x
′)

∣∣∣∣∣ = 0 (22)
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L V1 RKHS

Properties of RKHS’s

The feature map revisited

� It’s important to remember that there are 2 scalar products here. There is the scalar product
induced by the kernel K on H, defined in (10) and (11), and there is the standard scalar

product on L2(X) defined by 〈f , g〉 =
∫

X
f (x)g(x)dx .

� The basis {ψi} is orthonormal w.r.t. the L2(X) scalar product.

How to prove (19).
� ψj is eigenfunction, hence ∫

X

ψj (x
′)K(x, x′)dx′ = λjψj (x). (23)

� Now Kx itself has a decomposition in the basis, Kx =
∑

i γi (x)ψi , where γi (x) are the
coefficients.

� Let’s plug this decomposition in (23)∫
X

ψj (x
′)K(x, x′)dx′ =

∫
X

ψj (x
′)
∑
i

γi (x)ψi (x
′)dx′ (24)

=
∑
i

γi (x)

∫
X

ψj (x
′)ψi (x

′)dx′ (25)

= γj (x) = λjψj (x). (26)

� Hence Kx (x′) ≡ K(x, x′) =
∑

i λiψi (x)ψ(x′). Done.
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