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Lecture VIII: Classic and Modern Data Clustering — Part |

Marina Meild
mmp@stat.washington.edu
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Paradigms for cIustering/

Parametric clustering algorithms (K given) f—.
Cost based / hard clustering £ mea_n_(‘

Basic algorithms
K-means clustering and the quadratic distortion é-’

Model based / soft clustering M;x-h‘m‘s

Issues in parametric clustering
Selecting K

Reading: 14.3Ch 11.[1], 11.2.1-3, 11.3, Ch 25



What is clustering? Problem and Notation

» Informal definition Clustering = Finding groups in data

> Notation D = {xi1, x2, ... Xxp} a data set

n = number of data points

K = number of clusters (K << n)

A = {G,G,...,Ck} a partition of D into disjoint subsets

k(i) = the label of point i
L(A) = cost (loss) of A (to be minimized)
»> Second informal definition Clustering = given n data points, separate them into K
clusters

» Hard vs. soft clusterings

» Hard clustering A: an item belongs to only 1 cluster
. i=1:
» Soft clustering v = {7k }i 'k
Yk = the degree of membership of point i to cluster k

Z’yk,- =1 foralli/
Kk

(usually associated with a probabilistic model)

Tacadigm - arhat s ook clurer(ig)!
what algwifh ot
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(from [7])



Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not), and constraints
(about K, shape of clusters)

> Data = vectors {x;} in RY - Ol A ot is ood dU»W
Parametric @based [hard] €&— IMP(AU_F' M J
(K known) Model) based [soft]

Non-parametric  Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]
Gaussian blurring mean shift[?] [hard]
» Data = similarities between pairs of points [Sj]i j—1.n, Sjj = Sji > 0
Similarity based clustering
Graph partitioning spectral clustering [hard, K fixed, cost based)]
typical cuts [hard non-parametric, cost based]
Affinity propagation  [hard/soft non-parametric]
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Classification vs Clustering

Classification Clustering
Cost (or Loss) £ Expectd error many! (probabilistic or not)
Supervised Unsupervised
Generalization Performance on new Performance on current
data is what matters data is what matters
K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!
Stage Mature Still young

of field
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Parametric clustering algorithms

» Cost based
» Single linkage (min spanning tree)
» Min diameter
P Fastest first traversal (HS initialization)
» K-medians S wa
» K-means @&—— W wmarey
EE— . . . .
» Model based (cost is derived from likelihood)
» EM algorithm
» “Computer science” /" Probably correct” algorithms
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Single Linkage Clustering

Algorithm Single-Linkage

Input Data D = {x;};=1.,, number clusters K
1. Construct the Minimum Spanning Tree (MST) of D
2. Delete the largest K — 1 edges

> Cost L(A) = —miny ;s distance(Cy, Cyr)
where distance(A, B) = argmin ||x — y||
x€A, yeB

» Running time O(n?) one of the very few costs £ that can be optimized in polynomial time
» Sensitive to outliers!
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Height
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Minimum diameter clustering

May, 2022

> Cost L(A) = max, max ||x; — x|
ij€Ck

diameter
» Mimimize the diameter of the clusters
P Optimizing this cost is NP-hard
> Algorithms
» Fastest First Traversal [?] — a factor 2 approximation for the min cost
For every D, FFT produces a A so that
L7 < L(A) < 2L

P rediscovered many times
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Algorithm Fastest First Traversal
Input Data D = {x;};=1.,, number clusters K
defines centers uy.x € D

(many other clustering algorithms use centers)

1. pick p1 at random from D
2. fork=2:K

i < argmaxdistance(x;, {p1:k—1})
D

3. for i = 1: n (assign points to centers)
k(i) = k if py is the nearest center to x;
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STAT 391 GoodNote: Lecture VI

natives

K-means clusterin =
& Miz)-e or C
i ? I)z| k
Algorithm K-Means|?]
Input Data D = {x;}i=1.n, number clusters K
ialize centers pug, o, ... ux € RY at random
erate until convergence
1. for i = 1: n (assign points to clusters = new clustering)
k(i) = argmin ||x; — ju|
2. for k = 1: K (recalculate centers) W 96 'Y
1
-
|Gl ieCy

lever change after that
«cal optimum of cost £ (defined next)

«— (',wvx\/e/r%ﬂd in_3
i Steps

®
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The K-means cost ___,IOM”

May, 2022

K
ol £(a) = 357 Ik — il ? )

k=1i€Cy

» K-means solves a least-squares problem
» the cost L is called(quadratic distortion

{. Proposition The K-means algorithm decreases £(A) at every step.
2. Convergea in fiuide clepd e
- wifi digedion,
3. ..M a focal optimum of .[[A) Lsmwi‘:
4. Corotlary: inihatiation ynatkersl( i ple s
12 .

Sketch of proof

> step 1: reassigning the labels can only decrease £
> step 2: reassigning the centers py can only decrease £
because p as given by (1) is the solution to = 10

T
Q l/uk’ Z?Eacv;(x‘) 6 7
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Equivalent and similar cost functions
» The distortion can also be expressed using intracluster distances
£(n) Z - > Ik —xl? )
i,j€Cx
> Correlation clustering is defined as optimizing the related criterion
K
2
=2 > lx—xll
k=1ijECk
» This cost is equivalent to the (negative) sum of (squared) intercluster distances
K
= - Z Z Z [|x; — xj||? + constant (5)
k=1i€Cy j&Cx

Proof of (6) Replace pix as expressed in (1) in the expression of £, then rearrange the terms

Proof of (5) 3=, Z,‘chk [Ixi — XjH2 = Z Z [Ix — XJH -2k Zigck ngck [Ixi — XJHZ

i=1 j=1

N ———
independent of A



The K-means cost in matrix form — the assignment matrix

May, 2022

» [ as sum of squared intracluster distances

K
o) = Y 3 = xlf ©)
k=1 1=kl ;

| i,Jj€Ck

>

» Define the assignment matrix associated with A by Z(A)
Let A ={C ={1,2,3}, & ={4,5}}

Cl C2 G G
1 0 1/vV3 0
unnorm¢ Ay _ | 10 _ 1/vV3 0
Z7(A) = | 1 o | point i 28 =143 o
0 1 0 1//2
0 1 0 1/V2

Then Z is an orthogonal matrix (columns are orthornormal) and
L(A) = traceZ"™DZ  with Dy = ||x; — x;||? (7)
Let Z = {Z € R™K K orthonormal }

Proof of (7) Start from (2) and note that trace Z'AZ = 3, >ijec, LndAi = X jec, ﬁAij
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The K-means cost in matrix form — the co-ocurrence matrix

May, 2022

n=5 A=(1,1,1,2,2), X(A) =

O O wl-wl-wl-
O O wlI-wWI—WI-
O O wl-wl-wl-
NI O O O
NI O O O

[y

. X(A) is symmetric, positive definite, > 0 elements
. X(A) has row sums equal to 1
3. trace X(A) = K

N

IX(A)2 = (X,X) = K
X(A) = Z(A)ZT(A)

K

=3 sl = S0ox@)

i,j€Cx

with Dj = ||x; —><j||2
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Spectral and convex relaxations

May, 2022

1
L(A) — (D, X(A) D squared distance matrix €

X (X eR™" X >=0,X; >0, traceX = K, X1 =1

nXK K orthonormal

Spectral relaxation of the K-means problem

min trace Z' DZ
ZeZ
This is solved by an eigendecomposition Z* = top K eigenvectors of D

Convex relaxation of the K-means problem

in (D, X
)rggg((,>

This is a Semi-Definite Program (SDP)
Minimizing £
» By K-means — clustering A, local optima
> By convex/spectral relaxation — matrix Z, X, global optimum
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Symmetries between costs

May, 2022

> K-means cost £(A) = minuy, >y e, |IXi — pul?
> K-medians cost L(A) = minu, . > ¢ > iec, |1xi — pll

» Correlation clustering cost L(A) = >, Zi,jeck

> min Diameter cost £L2(A) = max, max; jec, |Ixi — X2

Ixi = xlI?
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Initialization of the centroids 1.k

<> Idea 1: start with K points at random X =
~» |dea 2: start with K _data points at random
What's wrong with chosing K data points at random?

Prob[ K out of K ] ’ v

1 7
09 E v
0.8 5
07 #
0.6 -2 -1 o 1 3 4
05 a
0.4
03
02] >
0.1 o

o
1 &
0 2 4 s 8 10

The probability of hitting all K clusters with K samples approaches 0 when K > 5
> Idea 3: start with K data points using Fastest First Traversal [] (greedy simple approach
to spread out centers)
@ Idea 4: k-means++ [| (randomized, theoretically backed approach to spread out centers)
@Idea 5: “K-logK” Initialization (start with enough centers to hit all clusters, then prune
down to K)
For EM Algorithm [], for K-means [?]



The “K-logK" initialization

May, 2022

The K-logK Initialization (see also [?])
1. pick pd ., at random from data set, where K’ = O(K log K)
(this assures that each cluster has at least 1 center w.h.p)
2. run 1 step of K-means
3. remove all centers 0 that have few points, e.g |Cy| < =7
4. from the remaining centers select K centers by Fastest First Traversal
4.1 pick p1 at random from the remaining {ug:K,}

42 for k =2: K, pug <+ argronax minj_1.,_1 ||u2, — ]|, i.e next py is furthest away from the
F‘k/
already chosen centers

5. continue with the standard K-means algorithm

[s]
g
5
[=]
k]
3
s
g
&
[s]
S
[
il
A
3
3
]
H
]
H
8
o
=
3
3
il
<
E
&




May, 2022

[s]
g
5
[=]
k]
3
b3
H
g
&
=
S
[
il
A
3
3
]
H
]
H
8
o
=
3
3
il
<
E
&

The “kmeans+-+" initialization

[y

vyVVYYVYY

. pick w1 uniformly at random from the data
Cfork=2:K,

P Define a distribution over data xj., by

. 2
Pi(x) o min | [xi — wll
» Sample gy ~ Py (i.e next p is probabilistically far away from the already chosen centers

Comparison between FFT, K-logK, kmeans++

all three methods can be seen as variants of FFT

FFT alone tends to choose outliers

K-logK and kmeans++ can be seen as robust forms of FFT

K-logK guarantees w.h.p. that no outliers will be chosen (by elimnating all small clusters)
the most expensive step in K-logK method is the first K-means step, which takes

nK log(K) distance computations

the computational cost of kmeans++ is (K — 1)n distance computations and Knlog(n)
for sampling from Py.k
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K-means clustering with K-logK Initialization

Example using a mixture of 7 Normal distributions with 100 outliers sampled uniformly

K-LocK K =7, T =100, n=1100, c =1

4
iteration

40 40 40
30 30 B35
20 20 g
5 30
M
10 10[
25|
0 0
-1 -1 0
=0 0 10 20 30 40 50 60 =0 0 10 2 30 40 50 60
40
30|
20|
10
0
“-i0 0 10 20 30

4 6
iteration



Coresets approach to K-medians and K-means

May, 2022

> A weighted subset of D is a (K, ¢) coreset iff for any u1.x,
[L(p1:k,A) — L(p1:x; D)| < eL(p1:4; D)

Note that the size of A is not K
Finding a coreset (fast) lets use find fast algorithms for clustering a large D

vy

P “fast” = linear in n, exponential in e 9, polynomial in K
» Theorem(?], Theorem 5.7
One can compute an (1 + €)-approximate K-median of a set of n points in time
O(n+ K®log® n+ gK? log® n) where g = el€/¢ log(1+1/¢)]~ (where d is the dimension of the
data)
» Theorem[?],Theorem 6.5

One can compute an (1 + ¢)-approximate K-means of a set of n points in time
O(n+ K®log® n + KK+2g=(2d+1) |ogK+1 ogh é)
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Model based clustering: Mixture models
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Mixture in 1D
» The mixture density

K
-y fx) = > mefi(x) .
=1 T remegentah e

" » fi(x) = the components of the mixture 96 c

P each is a density
» f called mixture of Gaussians if fi = Normal,,, 5,

a0s » 7, = the mixing proportions,
ooz S, =18m, =1, m >0.
5 5 % i > model parameters 6 = (71.x, p1:K, L1:K)

» The degree of membership of point i to cluster k

f
’YkidéfP[X,-ECk] = mifie(x) fori=1:nk=1:K
f(x)

Mixture in 2D (8)

> depends on x; and on the model parameters
n: X\'--Q T(,Q‘?PY,!"J

Gauissians L, ..
L Sompl L VT —? W‘P&*N‘g'k
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