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These problems are for extra credit. The solutions of some (maybe all) of these
problems can be found in the literature, sometimes in the references I hand out
in class. If you solve it by finding the answer in the literature, please cite the
source: author, article, publication venue, year, theorem number. A solution
found in the literature a is a solution deserving credit, provided you were the
one to find the solution by reading the respective article.

Problem 1 - Tarjan elimination and chordal graphs

a. Removing simplicial nodes.
Prove that if G is a chordal graph, and a simplicial node is removed, the resulting
graph remains chordal.

b. A chordal graph as a Bayes net (with no V-structures).
Write in pseudocode an algorithm that directs the edges of a chordal graph to
obtain a DAG with no V-structures. This algorithm will take a decomposable
MRF and find a perfect Bayes Net map for it. Look at the footnote for a hint1.

c. Prove that a chordal graph with n nodes cannot have more than n−1 cliques.
What is the chordal graph that attains this value?

d.∗ Give a condition for the uniqueness of the junction tree.

e.∗ [Try to] give a characterization of the set of all junction trees that correspond
to a given chordal graph. (This set represents an equivalence class of junction
trees).

f. If an edge is added/removed from a chordal graph, is the resulting graph
still chordal? If not, give a characterization of (i) what edge removals preserve
chordality, and (ii) what edges can be added to preserve chordality. (These
“moves” could be used to traverse the space of all chordal graphs over n nodes.)

1
Modify the Tarjan elimination algorith m.
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Problem 2 – The “minors” of the incidence matrix of a graph

The incidence matrix of a graph G = (V, E) with |V | = n, |E| = m is a n ×m

matrix M with elements in {±1, 0}. Each edge e = (i, j) of the graph is assigned
a column, and in this column Mie = 1, Mje − 1 and the rest of the elements
are 0. Note that by this, each edge e is actually directed, but for the present
problem it’s not important how they are directed. That is, you can consider
that the plus and minus of each edge is assigned arbitrarily.

We assume the graph G is connected, i.e it has a path between any two nodes
of V . This implies m ≥ n− 1.

Let S ⊂ E be a set of n − 1 edges and consider the submatrix MS formed by
the colums in S. This will be a n× n− 1 matrix. Remove an arbitrary row of
MS to obtain B, a (n− 1)× (n− 1) matrix.

Prove that detB = ±1 if the edges in S form a spanning tree of G and detB = 0
otherwise.

1. This property, beautiful in itself, is the main ingredient for proving another
beautiful and remarkable result in graph theory that will be mentioned later in
the course.

2. This combinatorics problem, as well as the better known result I’m alluding
to, have some interesting relations to statistics. Hidden in this problem is a
process of counting. Do you see it? And counting is a special form of measure
(in the measure theory sense). Hence, whenever you can count something, there
likely is a way to turn this into a probabilistic model. Examples later in the
course.

Problem 3 - Value of information

Suppose that we are interested in a query variable Q taking value q. So far, we
have observed variables E ⊂ V taking values e. The question is which other
variable to observe from the ones that could be observed (this may not be all
of V \ E \ {Q}). Therefore, we will be interested in computing a score for
each candidate variable X , that reflects how valuable X would be in reducing
uncertainty in P [Q = q|E = e].

a. One possible way to arrive at a score for X is the sensitivity

S(Q = q,X = x) =
P [Q = q|X = x,E = e]

P [Q = q|E = e]
=

P [X = x|Q = q, E = e]

P [X = x|E = e]
(1)

The first equality above is the definition. Show that the second (called outward
formulation, because it goes from Q to X) inequality follows from the first
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(called inward formulation, because it goes from X to Q).

b. While the two defintions of sensitivity are equivalent mathematically, they
may not be the same in terms of computation. Why may the outward for-
mulation be more practical? Consider also the special case of a “disease and
symptom” Bayesian network where Q is a disease and X is a symptom. Can
you see an additional advantage in this case?

c. Sensitivity measures if observingX = x increases or decreases the probability
of Q = q.

Is this really a “good” criterion to choose X by? Why or why not?

Second, as you must have already realized, S depends on the particular value
x that is observed. Is it possible to have S(Q = q,X = x) > 1 (or < 1) for all
values x ∈ ΩX ? (In other words, is it possible that no matter what X is, the
probability of Q = q increases?). Prove your answer.

d. Mutual information as score. The entropy of a (discrete) variable Z measures
the “uncertainty” in the distribution PZ . The mutual information2 measures
expected the reduction of entropy after observing X . Calculate the expression
of the mutual information I(Q,X) = H(Q) − H(Q|X) as a function of the
conditional probabilities P [Q = q|X = x,E = e], P [Q = q|E = e], . . .. Note
that this in an average over all possible values of Q.

Reformulate the expression of the mutual information in order to compute a
score for the query of interest, i.e. for Q = q.

e. Note that I(Q,X) = I(X,Q) = H(X)−H(X |Q). Similarly to question b.,
are there among the various possible expressions for I(Q = q,X) some that are
more practical computationally?

(When) is the mutual information a good score? When not?

2For definitions of mutual information and entropy see

http://www.stat.washington.edu/courses/stat538/winter11/handouts.html Lecture

7, section 1. These will be studied in more detail in STAT 538.
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