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Problem 1 - HMMs and variable elimination-Warmup, NOTGRADED

H1 H2 H3 H4

V1 V2 V3 V4

Consider the Hidden Markov Model (HMM) above. This problem studies some
particular variable elimination orderings for the HMM. You are required to
use the Bayes Net/conditional probabilities factorization of the HMM in this
problem. Write the factorization of PH1:4,V1:4

as a product of conditional
probability tables.

Variables V1:4 are observed, i.e V1 = 0, V2 = 1, V3 = 1, V4 = 0. The elimination
ordering is π = V1, H1, V2, H2, V3, H3, V4.

a. In the table below (next page), fill in the potentials eliminated, the potentials
created, and the sizes of the new potentials for each step of the elimination.
Assume all variables are binary.

The table assumes that you use the algorithm in the notes, which reduces the

potentials for an observed variable at the time of the elimination. But you can

also use the algorithm given in class, where all potentials containing the observed

variables are reduced before the elimination begins. If you do so, please write

that clearly and explain what happens.

b. What (conditional) probability represents the potential created after the
elimination of V1?

c. Same question for the potential created after the elimination of V2, V3, V4.

d. Denote by P ′ the product of the potentials at the end of the elimination,
i.e P ′ =

∏
φ∈Φ φ, where Φ is the set of potentials at the end of the elimination.

What probability distribution represents P ′? (no proof required)

e. Normalize P ′ to sum to 1 and denote by P ′′ the result. What probability
distribution is P ′′ ? (no proof required)
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f. What probabilities represent the potentials created when H1, H2, H3 are
eliminated? What algorithm does this elimination remind you of?

Variable Potentials New Size of [Optional New factorization/
eliminated eliminated potential new φ graph]

V1:

H1:

V2:

H2:

V3:

H3:

V4:

g. Now take a new elimination ordering π = V4, H4, V3, H3, V2, H2, V1.

You will answer the same questions as for the previous ordering. Filling a table
is optional though. Fill as much of the table as you need to answer the questions.

h. What (conditional) probability represents the potential created after the
elimination of V4?

i. Same question for the potential created after the elimination of V3, V2, V1.

j. Denote by Q′ the product of the potentials at the end of the elimination, i.e
Q′ =

∏
φ∈Φ φ, where Φ is the set of potentials at the end of the elimination.

What probability distribution represents Q′?

k. Normalize Q′ to sum to 1 and denote by Q′′ the result. What probability
distribution is Q′′ ?

More advanced topics
Many algorithms for manipulating graphical models with particular structure
can be re-cast as variable elimination with a particular elimination order. Con-
sider the Forward-Backward algorithm as applied to an HMM with known
values for all observation variables, to calculate posterior marginal probabilities
for each hidden state variable. The F-B algorithm is the name of the recursive
computation of αy

i (forward probabilities) and β
y
i (backward probabilities) de-

scribed on page 9 in the notes. (You can also look it up in the Jordan chapter).
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l. Explain how to use variable elimination and its intermediate results to arrive
at the α

y
i , β

y
i and γ

y
i = P (qi|y) variables of the Forward-Backward algorithm.

m. In a sentence or two, what computational deficiency of VE does this high-
light? (Why is Forward-Backward used for computing the posterior marginal
probabilities P (qi|y), i = 1 : n in HMMs and not the VE algorithm? You
need only consider the standard VE algorithm as presented in the notes or in
class; it is possible that “clever” adaptations of VE can become as efficient as
Forward-Backward)

Problem 2 - Looking inside the box

The (famous) QMR-DT graphical model is a probability distribution over dis-
eases and symptoms created using expert knowledge, used for medical diagnosis;
the basic operation of interest is to calculate the posterior probability of par-
ticular diseases given measurements of a subset of symptoms. Diseases and
symptoms are both binary variables. The model assumes:

• diseases are independent (Di ⊥ Dj)

• symptoms are conditionally independent given diseases (si ⊥ sj |D)

Graphically, therefore, QMR-DT is bipartite and looks something like this
(where A,B,C, . . . are the diseases and sj are the symptoms):

A B C D E F G H

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

Each disease Di has a known marginal distribution PDi
, and each symptom sj

a conditional distribution given a subset of diseases Psj |pa(sj). The conditional
distribution of a symptom given its parent diseases takes a particularly simple
form known as a “noisy-OR”,which has one parameter qij per symptom-disease
pair:

P (si = 0|D1 . . . Dn) =
∏

j=1...n

q
Dj

ij

P (si = 1|D1 . . . Dn) = 1− P (si = 0|D1 . . . Dn)
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Notice that P (si = 0|D1 = 0 . . . Dn = 0) = 1: symptoms are never present in
absence of disease.1 If exactly one disease Dj is present (Dj = 1,Dk 6=j = 0),
then P (si = 0) = qij . Thus qij is, roughly, the probability that disease j fails
to provoke symptom i and (1 − qij) is the probability of disease j provoking
symptom i independently of other diseases.

If symptom s1 has two parents A and F , and qA,1 = .1, qF,1 = .2 then

P (s1 = 0|A = 0, F = 0) = 1

P (s1 = 0|A = 1, F = 0) = .1 = qA,1

P (s1 = 0|A = 0, F = 1) = .2 = qF,1

P (s1 = 0|A = 1, F = 1) = .1× .2 = .02

The noisy-OR parameterization is very convenient for this medical domain: it
has few parameters and if diseases are rare and independent (by assumption),
so that in most cases at most one parent disease is active for a given symptom,
it is easy to estimate qij .

This problem investigates how the variable elimination (VE) procedure for undi-
rected graphs can be dramatically improved by using knowledge of the form of
potentials. It’s a lesson that algorithms that rely only on conditional inde-
pendencies are often much weaker than those tailored to numeric properties of
distributions.

For questions a, b, c you are required to use the Bayes Net/conditional probabil-
ities factorization of the joint distribution (and we will show that the potentials
created will be smaller than for the moralized and triangulated MRF factor-
ization). For questions d, e you will replace the conditional probability tables
PX|Y with the Noisy-OR parametrizations described here. You will find that
additional savings in computation are possible for this particular case.

a. For the disease-symptom graph given above the values of s1, s2, s5, s6 have
been observed. Graphically execute the VE procedure to calculate P (A|s1, s2, s5, s6)
using elimination order s12, s11, s10, s9, s8, s7, s6, s5, . . . , s1, C,D,E,G,H, F,B.
For this question, ignore the specific noisy-OR form of the probability tables,
i.e work with literals of the form Psi|XY (conditional probability tables).

That is,

• Write the expression of PV in the Bayes Net representation.

• Then, for each variable eliminated, list: the variable, the edges appearing,
the new potential formed, the eliminated potentials. Find which of the
potential formed are equal to 1. These potentials do not need to be carried
over to the next step.

1The possibility of a “false positive” can be accounted for by introducing a fictitious disease,

always present.
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• Draw the graph over the diseases only (no symptoms) again, with all the
new edges from moralization and elimination (let this graph be called
GV E). Draw also a simplified graph (over diseases, without the symp-
toms), where no edges are added if the resulting potential equals 1 (let
this graph be called GV Es.

• Triangulate the original graph by the Tarjan Elimination algorithm with
the elimination order above (eliminate A last). Draw the resulting trian-
gulated graph GT (again, ignoring the symptom nodes and their edges).

Compare GT , with GV E and GV Es the full and the simplified graphs ob-
tained above. (No more than 1-2 sentences expected).

What is the largest potential during the elimination?

b. Consider the elimination of the unobserved symptom variables. In each
case, what special numeric form does the new potential over neighbors have and
what optimization to VE does it allow? Give a general rule for optimizing VE
of unobserved variables in directed graphs.

c. Consider the elimination of the disease variables with unobserved symptoms.
What special form does this potential have and what optimization of VE deoes
it allow. Give a general rule.

d. Assume that the observations are s1 = 0, s2 = 1, s5 = 0, s6 = 0. Also denote
PX(1) = pX , PX(0) = qX for X = A,B,C . . .. Calculate the expression of the
intermediate potentials obtained in question a in terms of the q’s and p’s, and
obtain the expression of P (A, observations) in terms of these parameters. [Hint:
look at the next question]

e. Consider the elimination (in the noisy-OR model) of observed symptoms
with value 0. What special numeric form does the new potential over neighbors
have and what optimization to VE does it allow? Can the same simplification
be performed if the symptom has value 1?

Problem 3 – Trees as Junction Trees

Consider a connected junction tree with maximal clique size 2. We called this
a tree graphical model (or a tree MRF). Denote the set of edges of the tree by
E .

a. Prove that the PV in the junction tree factorization is expressed as

PV =

∏
XY ∈E PXY

∏
X∈V P

degX−1
X

where degX is the degree of node X , i.e. the number of edges incident to X .
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b. We observe a set of nodes E taking value e. Assume that all nodes in E are
leaves of the tree (i.e. they have degree 1). Consider now the joint distribution
of the remaining variables given E = e, i.e PV \E|E=e (which is proportional
to PV \E,E=e as you recall). Prove that PV \E|E=e admits a factorization as a
spanning tree over V \ E.

c. Now assume that E is a single node which is not a leaf. Prove that PV \E|E=e

admits a factorization as a forest tree over V \ E (a forest is a graph with no
cycles that is not connected). How many connected components will the forest
have?

[Problem 4 - Exploiting conditional independencies in VE– OPTIONAL,
for extra credit]

We are interested in PX|E=e where X ∈ V is a single variable. Assume now
that there is another variable Y ∈ V \E that is conditionally independent of X
given E. Intuitively, we should not need consider Y in any way when computing
PX|E=e since Y is not relevant; however, the VE algorithm given in class will
eliminate (sum over) the values of Y .

Write a modified VE algorithm that does not perform “useless” calculations
involving variables Y for which X ⊥ Y |E. Give a proof that your algorithm is
correct.

Notes: 1. There is a short proof, and the modification to the VE is a small one.
2. You can assume that you know when you start the elimination which are the
variables Y , as Y can always be found from the graph.
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