STAT 535 Lecture 0 September 30, 2011 Introduction to Statistical Learning ©2011 Marina Meilă mmp@stat.washington.edu

- What's in a name? Or where does "Machine Learning"/"Statistical Learning" come from?
- What's in this sequence?
 - Data analysis problems (e.g. clustering, classification)
 - Statistical models (e.g. exponential family models, graphical models)
 - Statistical methods (e.g. Support Vector Machines)
 - Algorithms (e.g. message passing, K-means). There is a continuum between algorithms, methods, and some of the other items on this list.
 - Mathematical facts/concepts from: graph theory, convex analysis
 - Theorems (without proofs), lemmas (with proofs)
- Taxonomies ... all of them incomplete
 - Statistical Learning Problems
 - * Unsupervised
 - * Supervised
 - * (Semi-supervised)
 - * (Reinforcement)
 - Statistical models
 - * Parametric
 - * Non-parametric
 - Statistical inference paradigms
 - * Bayesian

- * Maximum Likelihood (ML)
- * Penalized Likelihood
- * Maximum A-Posteriori (MAP)

These lists are meant to show that in this course we will not adopt a particular paradigm, but we will touch on most of them.

- 535 "Unsupervised Learning" will have two major topics
 - Graphical probability models, i.e. algorithms for multivariate statistical inference
 - Unsupervised learning, mainly clustering
- 538 "Supervised Learning" will have two major topics
 - Supervised learning (classification, regression)
 - Convexity and convex optimization in statistics