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mmp@stat.washington.edu

For the first part of 535, we will be concerned with

• Conditional independence (why?)
• Graphical probablity models/Belief networks (a language for expressing
conditional independencies)

• Algorithms, especially related to graphs, and to statistical inference
(how to make inference efficient? how fast can it be?)

• What the above three have in common is efficient multivariate sta-

tistical inference

1 Belief networks

Belief networks are probability models over multivariate domains. In this
course, to simplify matters, we will be concerned with domains where all the
variables are discrete, but everything we learn applies at least conceptually
to continuous domains.

Here is are two example of multivariate domains described by a belief net-
work:
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Why should we learn about them?

• Powerful models (can represent a very rich class of distributions)

• Can represent distributions compactly

• Are intuitive

• Efficient and general algorithms for statistical inference.
Statistical inference = computing P (X = x|Y = y)

• Efficient and general algorithms for estimating the model parameters
(by e.g Maximum Likelihood)
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2 Algorithms

• graph algorithms: e.g Minimum Spanning Tree, Matrix Tree Theorem

• belief network algorithms: e.g the Junction Tree algorithm, the Forward-
Backward algorithm for HMM’s revisited, message-passing algorithms

• other general purpose algorithms: e.g algorithms for disjoint sets

A common theme will be that big, complex sample spaces can often be
partitioned into subsets that can be tackled independently, after a set of
“conditioning” variables have been fixed. For example, given two consecutive
exact position measurements for a GPS satellite at times t and t+ 1 (two so
as to derive velocity information), prior history should not influence future
behavior, and the sets of random variables ≤ t+ 1 and ≥ t can be analyzed
independently. In computer science, this is commonly known as divide-and-
conquer, a close cousin of dynamic programming.

3 Multivariate distributions and statistical in-

ference

Notations:
V = {X1, X2, . . .Xn} the domain

n = |V | the number of variables, or the dimension of the domain
Ω(Xi) the domain of variable Xi (sometimes denoted ΩXi

)
ri = |Ω(Xi)| (we assume variables are discrete)

PX1,X2,...Xn
the joint distribution (sometimes denoted P (X1, X2, . . .Xn)

A,B ⊆ V disjoint subsets of variables, C = V \ (AB)

Example: The “Chest clinic” example - a domain with several discrete
variables.

Smoker ∈ {Y,N} = Ω(S)

Dyspnoea ∈ {Y,N} = Ω(D)
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Lung cancer ∈ {no, incipient, advanced} = Ω(L)

Bronchitis ∈ {Y,N} = Ω(B)

V = {S,D, L,B}

The domain has 4 variables, 2× 2× 3× 2 = 24 possible configurations. The
joint probability distribution PSDLB(s, d, l, b) is real valued function on
Ω({S,D, L,B}) = Ω(S) × Ω(D) × Ω(L) × Ω(B). We sometimes call it a
multidimensional probability table.

The marginal distribution of S, L is

PSL(s, l) =
∑

d∈Ω(D)

∑

b∈Ω(B)

PSDLB(s, d, l, b)

The conditional distribution of Lung cancer given Smoking is

PL|S(l|s) =
PSL(s, l)

PS(s)

Computing the probabilities of some variables of interest (L) when we ob-
serve others (S) and we don’t know anything about the rest (B,D) is a
fundamental operation in probabilistic reasoning called “statistical inference
in the model PSDLB”.

We define by statistical inference the (partial) computation of the con-
ditional distribution PA|B=b, where A,B are as defined above, and b is in
Ω(B). We call A the variable of interest or the query variable, B are
the observed variables or the conditioning variables, and B = b is the
evidence.

Sometimes, inference will denote computing only a single value PA|B(a|b),
and sometimes it will denote computing a statistic under PA|B=b, like for
instance the mode maxa PA|B=b and argmax

a
PA|B=b.

Examples of inference operations

• Bayesian estimation. Model P (X|θ), prior P (θ), evidence=data=sample
X1, . . .Xn; inference is calculating the posterior P (θ|X1, . . .Xn)
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• Maximum Likelihood (ML) estimation (if the uniform prior exists on
Ω(θ). Assume the prior P (θ) is uniform. Then ML estimation is equiv-
alent to the argmax

θ
P (θ|X1, . . .Xn)

• Regression and classification

• Diagnosis

• Real life (or literary fiction)

• Science and engineering: next section

4 Multivariate distributions in applications

We will generally be concerned with sample spaces expressed as a product
over a finite set of random variables, often discrete:

• Spatial localization Variables: Xit ∈ R
3, Yit ∈ R, Lt ∈ R

2,
t = 1 : T, i = 1 : 4

Sample space is path of ground observer L1:T and constellation of 4
GPS satellites X1:4,1:T over a sequence of time steps, and signal delay
measurement used by observer Y1:4,1:t to estimate position (using model
of satellites). Note that in this case the observer can not directly mea-
sure satellite positions. (In common usage, problem also incorporates
inertial guidance measurements.) A typical problem: what is most
probable ground location at the moment, given recent measurements?

• Medical diagnosis Variables: Di, Fj ∈ {0, 1}, i = 1 : d, j = 1 : f

Di represent the presence or absence of an underlying disease; Fj is
the result of a diagnostic finding (a medical test, a condition of the
patient). A typical problem: what is posterior marginal probability of
each disease given a small set of known findings? Another problem:
what is the further information value of performing each test?

• Theoretical physics Variables: Qij ∈ {−1,+1}, i, j = 1 : k

5



Sample space is idealized 2D lattice of electrons with spins. A typi-
cal problem: what is covariance of two spatially separated electrons?
Another: what is average size of connected components with identical
spins? Another: how do these answers depend on the temperature?

• Language modeling Variables: [parses, meanings], Xi ∈ [A-Z], i =
1 . . .N

Sample space is sentences of length N . A typical problem: which of two
sentences are more probable? Find the suject/object of this sentence.
Translate it into Chinese. Is this sentence about cars? Is this sentence
making a positive/negative comment about topic X?

• Image processing Variables: [contents descriptors], Bij ∈ [0, 1], i, j =
1 . . . 1000

Sample space is binary images of width and height 1000. A typical
problem: find most probably reconstruction of image that is missing
pixels. Does this image contain a car/a cheetah/a person? Which
direction is the person facing? How many red blood cells are in this
image?

On each of these sample spaces we will assume a joint probability distribu-
tion (or pdf in the case of continuous variables) over the primitive events -
particular configurations or assignments to the variables. This probability
distribution PX1...Xn

(x1 . . . xn) could be:

• estimated from data (for example, from patient case histories in the
disease/test case, in which case records are likely to be missing values
for many of the variables);

• elicited from expert opinion (for example, by asking doctors to describe
their internal models or using gambling-based games to extract them);

• derived from models (in the case of GPS, from Newton’s laws, spe-
cial and general relativity, stochastic models of observer motion and
atmospheric effects on signal propagation);

• assumed axiomatically (as in the case of an idealized electron lattice).
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Notice that in these examples one would expect strong dependencies between
at least some of the variables (perhaps those that are close neighbors in time
or space), and that the sizes of the sample space are quite large, likely far
too large to

• store the joint distribution as a table associating a probability with
each event;

• directly estimate the entries in such a table from a dataset;

• use a computer to process each configuration individually, for example
to compute ES[f ] =

∑

x P (x)f(x) or argmaxxP (x).

In some cases it’s easy to imagine incremental causal generative models where
some variables are the “cause” of others, as as in the GPS and language
modeling examples; in others like the electron spin example there doesn’t
seem a natural causal order among the variables.

5 How complex are operations with multi-

variate distributions?

Number of configurations |Ω(V )| =
∏n

i=1 ri ≥ 2n. Required storage
depends exponentially on n!

Sampling: can be done in logarithmic time in the size of Ω(V ), thus is O(n).

Returning the probability of a configuration is also O(n).

Computing the marginal ofX1, . . .Xk takes
(

∏k

i=1 ri

)

(
∏n

i=k+1 ri
)

= |Ω(V )|

additions. Also exponential.

Computing conditional distributions: they are ratios of two marginals⇒ also
exponential.
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PA|B =
PAB

PB

(1)

PAB(a, b) =
∑

c∈Ω(C)

PV (a, b, c) (2)

PB(b) =
∑

a∈Ω(A)

∑

c∈Ω(C)

PV (a, b, c) (3)

=
∑

a∈Ω(A)

PAB(a, b) (4)

Hence, PB(b) is the normalization constant that turns PAB(·, b) into PA|B(·|b).

In conclusion, a multivariate probability table becomes intractable when the
number of variables is large (practically over 10 – 20). A solution to alleviate
this problem (but ONLY in special cases) is offered by graphical proba-

bility models. They have the potential for compact representation and for
efficient computations.

6 The many views of statistical inference

Probability AI Computation

PV joint distribution (state of) knowledge multidimensional array
PA, A ⊆ V marginal (state of ) belief (about A) sum over subarrays
B = b evidence observation setting an index
PV \B|B=b conditional distribution revised knowledge extract sub-array,

normalize (sum, divide by const)
(corresponding to B = b)

PA|B=b inference revised belief in A sum in sub-array
(corresponding to B = b),
normalize (sum, divide by const)
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