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1 The MAP inference problem

The so called Maximum A-posteriori Probability (MAP) inference problem
is the problem of finding the most probably configuration of the variables in V
given evidence E = e0, and it probability.

(MAP )
p∗ = maxxV ∈ΩV

PV (xV )
x∗ = argmaxxV ∈ΩV

PV (xV )

In the above, x∗ is called the MAP configuration. We will assume for simplicity
that x∗ is unique.

This problem can be solved by a modification of the Junction Tree algorithm.
We will assume for now that the JT potentials contain a valid, normalized and
calibrated representation of probability distribution PV .

2 The JT Algorithm with Max Propagation – obtain-

ing p
∗

The motivation for Max Propagation is the distributivity of multiplication
w.r.t. the max operation, for non-negative numbers.

max{ab1, ab2} = amax{b1, b2} a, b1, b2 ≥ 0 (1)

or, more generally
max
b∈ΩB

{ab} = a max
b∈ΩB

{b} a, b ≥ 0 (2)

This property can be applied to a probability distribution represented by a JT.
We demonstrate this on the simple example

AB BC CD

B C
PABCD = φABφBCφCD

φBφC
where we assume the

root clique is AB.

1



Finding p∗ the maximum value of PABCD amounts to

max
abcd

PV = max
abcd

φABφBCφCD

φBφC
(3)

= max
ab

φAB

φB
max

c








φBC

φC
max

d
φCD

︸ ︷︷ ︸

φnew

C








(4)

= max
ab

φAB

φB

max
c

[

φBC
φnew

C

φC

]

︸ ︷︷ ︸

φnew

BC

(5)

= max
ab

φAB
φnew

B

φB
(6)

= max
ab

φnew
AB (7)

The above sequence of algebraic manipulation can be readily seen as a propagation
algorithm, where the remotest clique CD passes the“message” maxd φCD to its
parent clique through the separator C, after which a similar message is passed
recursively from BC to its parent AB.

The sequence is thus equivalent to a CollectEvidence( AB ) call, where the
only modification is in the Absorb function, replaced now with MaxAbsorb.

MaxAbsorb(C → C ′)

1. φnew
S ← maxC\S φC

2. φnew
C′ ← φC′

φnew

S

φS

3. φS ← φnew
S

Remarks (The proofs are left as exercise)

1. MaxAbsorb does not change the joint distribution, i.e PV =
∏

C φC/
∏

S φS

is invariant.

2. After CollectEvidence and DistributeEvidence with any root, the JT
will be max-calibrated, i.e

max
C\S

φC = max
C′\S

φC′ = φS (8)

for any tree edge C − S − C ′.
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3. After CollectEvidence the root clique C0 contains a potential equal
to maxΩV \C0

PV , i.e for each configuration xC0
∈ ΩC0

, the corresponding
φC0

(xC0
) is the probability of the most likely configuration with the given

xC0
.

Hence, the maximum of φC0
will be the maximum of PV , p∗.

4. After DistributeEvidence, the maximum of φC in any clique C will equal
p∗. (This is due to the max-calibration property of the JT.)

5. Since PV was not changed, the JT can be returned to the original calibrated
state by performing the standard JT algorithm (without normalization).

6. If evidence E = e0 is entered before the max-propagation steps, then the JT
will contain PV,E=e0

and p∗ will be the maximum of this new distribution.

Max Propagation is a special case of a more general discrete optimization technique
called Dynamic Programming. In the special case when the JT represents a
Hidden Markov Model, Max Propagation is nothing else than the well known
Viterbi Algorithm.

3 Obtaining the MAP configuration x
∗

To obtain the (unique) configuration x∗ that has probability p∗, we need to create a
distributed representation for it. Thus for each clique C and separator S, we create
an additional potential IC , respectively IS which take values in {0, 1}. In other
words, the I potentials are indicator variables for the maximum configuration in
each clique and separator.

If you are familiar with Dynamic Programming, you will recognize in the I vari-
ables, the indices for backtracking that a Dynamic Programming uses to recover
the optimizing configuration, after it finds the optimal solution.

Max-Propagation with the I potentials proceeds in the following way:

1. At CollectEvidence

• We set each potential IC during MaxAbsorb(C → pa(C)) as follows:
Let C = D ∪ S, where S is the separator between C and its parent.
That is, D contains the variables in C but not in its parent. Now, for
xS ∈ ΩS set IC(xD, xS) = 1 if xD = argmaxΩD

φC(x′
D, xS) and 0

otherwise. The values IC(xD, xS) will be the indicator function of the
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maximum in φC(., xS) for each fixed xS .

IC(xD, xS) =

{

1 ifφC(xD, xS) = φnew
S (xS)

0 ifφC(xD, xS) < φnew
S (xS)

(9)

• Set all IS ≡ 1

2. In stead of normalization set

IC0
(xC0

) =

{

1 ifxC0
= argmaxφC0

0 otherwise
(10)

for the root clique C0. If x∗ is unique, then a single value of IC0
will be set

to 1.

3. At DistributeEvidence propagate messages for the I potentials by per-
forming a MaxIAbsorb(C → C ′) for every MaxAbsorb(C → C ′).

MaxIAbsorb(C → C ′)

(a) Inew
S ← maxC\S IC

(b) Inew
C′ ← IC′

Inew

S

IS

(c) IS ← Inew
S

One can immediately remark that the divisions by IS is are superfluous, since these
potentials will all be identical to 1. They were included for the sake of unity only.
However, the messages Inew

S will not be identical to 1. In fact, if x∗ is unique, each
message Inew

S will contain a single 1, indicating the configuration of the parent
clique that achieves the maximum. After MaxIAbsorb, the child clique will also
contain a unique 1, indicating x∗

C , the configuration of its variables that achieves
p∗. (This fact can be proved easily by induction from the root clique outwards.)

At the end of the Max-Propagation, each IC , IS will contain thus a single 1,
which will indicate x∗

C the optimal configuration of the variables in C. All the x∗
C

configurations will be calibrated with the unique x∗ – hence we will have obtained
a distributed representation for x∗ by means of the indicator variables IC .

(Note that the algorithm presented here differs slightly from the algorithm de-
scribed in Cowell (pp. 31). Other variants exist as well.)

If there are more than one most probable configurations, then in each clique we
must chose a single one (by setting all other 1’s to zeros) before we proceed with
DistributeEvidence from that clique. The algorithm will contain at the end a

most probable configuration only.
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4 Counting most probable configurations

To find the number of most probable configurations, one can use another JT-like
propagation algorithm.

1. Perform a regular Max-Propagation (Collect and Distribute on the po-
tentials φ to obtain a max-calibrated JT. (After it, maxΩC

φC = p∗, maxΩS
φS =

p∗).

2. Create indicator potentials IC (IS) for all cliques (separators) respectively.
Each IC (IS) contains 1 for the configurations that equal p∗ in the respective
clique (or separator) and 0 otherwise.

IC(xC) =

{

1 if φC(xC) = p∗

0 otherwise
(11)

Every I potential will contain at least a one.

3. Perform CollectEvidence on the I potentials, with the standard Absorb
function (which sums over IC\S to obtain Inew

S ).

4. “Normalization”. Summation over IC in the root clique will give Z =
|ArgmaxΩV

PV |.

5. Optional DistributeEvidence will make all the IC , IS tables marginally
calibrated. Then for any IC (IS) we will have

∑

ΩC

IC = Z = #solutions (12)

The I potentials preserve the invariant (Exercise: prove that Absorb does not
change IV ).

IV =

∏

C IC
∏

S IS
(13)

IV (x) is an indicator function that is 1 when x is a most probable configuration
(i.e PV (x) = p∗) and 0 otherwise.

Note also that the counting algorithm using the I potentials is general, and can
be applied to count other types of configurations in the JT.

5 Sampling by JT propagation

Taking a sample from a probability table can be thought of as observing evidence.
Therefore, sampling by the JT algorithm is a form of DistributeEvidence.
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Start with a (marginal) calibrated JT (or after EnterEvidence, CollectEvi-
dence if evidence exists).

• DistributeEvidence using the following modified Absorb function.

SampleAbsorb(C → C ′)

1. Absorb(C → C ′)

2. Sample x∗
C′ ∼ φC′

3. Enter evidence x∗
C′ in φC′ , i.e φC′(xC′) ← φC′(xC′)δx

C′ ,x∗
C′

4. Normalize φC′

5. [Optionally save the normalization constant ZC′ .]

Remarks

• The DistributeEvidence part of the algorithm implicitly assumes that the
j.t. is rooted at C, and sampling is peformed conditionally on the ancestor
cliques.

• For the root clique, the absorbtion from the parent is omitted.

• Step 2 is equivalent with sampling xC′\C |xC , because the variables that are
common between C and C ′ have already been sampled in the parent clique
C. The Absorb in step 1 will have set the entries in φC′ corresponding to
xC 6= sampled value to 0.

• The normalization will produce a φC′ with a single 1 in location x∗
C′ and

zero elsewhere. Hence, propagating this potential further will zero out all
the entries incompatible with x∗

C′ from the children cliques.

• After Absorb (i.e before the sampling step) the potential φC′ will be nor-
malized.

• Multiplying the normalization constants ZC gives the probability of the sam-
ple.

PV (x∗) =
∏

C

ZC =

∏

C ZC
∏

S ZS
(14)

The second equality is true because the φS potentials will contain a single
1, so their normalization constants ZS will be all 1.
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