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1 The estimation problem

Given: V = {X1, X2, . . .Xn} a set of n discrete variables and D = {(x1
1x

1
2 . . . x1

n),
(x2

1x
2
2 . . . x2

n) . . . (xN
1 xN

2 . . . xN
n )} a sample (or dataset) of size N .

Assumption: Let M be a set of graphical models (or belief networks) over
V . We assume D is an i.i.d. sample from some P ∈.

Wanted: P

The Maximum Likelihood (ML) criterion:

P̂ = argmax
P∈M

P (D)

or, because the samples xi = (xi
1x

i
2 . . . xi

n) are independent

P̂ = argmax
P∈M

l(P )

l(P ) =
∑N

i=1 log P (xi)

l(P ) is called the log-likelihood of the distribution P .

Assume now that the graphical model family M we are considering is of
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Bayes nets. Later we will discuss parameter estimation for Markov Fields.

Each Bayes net in M is defined by structure, i.e. the graph, and parametriza-
tion, i.e. the set of tables {PX|Y |X} with Y = pa(X) ⊆ V .

Estimating a graphical model means estimating both the structure and the
parameters. We shall start by assuming that the structure is fixed and by
focusing on the estimation of the parameters.

2 ML Estimation for Bayesian networks

2.1 Estimating the parameters of a multinomial distri-
bution

Assume V = {X}. Then

l(PX) =
N
∑

i=1

log PX(xi) (1)

=
∑

k∈Ω(X)

NX(k) log PX(k) (2)

= N
∑

k∈Ω(X)

NX(k)

N
log PX(k) (3)

Here we have denoted by

NX(k) =
N
∑

i=1

δkxi

the number of times X = k in the sample D.

The ML estimate of PX is

θML
X (k) =

NX(k)

N
(4)
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2.2 Estimating the parameters of a bivariate multino-
mial distribution

Assume V = {X, Y } and the graph is X −→ Y . Define NXY (k, j) =
∑N

i=1 δxikδyij = the number of samples for which X = k and Y = j in
D. Then,

l(PXY ) =
N
∑

i=1

log PXY (xiyi) (5)

=
N
∑

i=1

log PX(xi) +
N
∑

i=1

log PY |X(yi|xi) (6)

=
∑

k∈Ω(X)

NX(k) log PX(xi) +
∑

k∈Ω(X)

∑

j∈Ω(Y )

NXY (k, j) log PY |X(yi|xi) (7)

= N
∑

k∈Ω(X)

NX

N
(k) log PX(xi) + N

∑

k∈Ω(X)

NX(k)

N

∑

j∈Ω(Y )

NXY (k, j)

NX(k)
log PY |X(yi|xi)

l(P ) is maximized for P ML given by

θML
Y |X(j|k) =

NXY (k, j)

NX(k)
(8)

θML
X (k) =

NX(k)

N
(9)

2.3 Estimating the parameters of a graphical model

For a fixed DAG structure G, the distribution P can be expressed as:

PV =
∏

X∈V :Y =pa(X)

PX|Y (10)

The log-likelihood is expressed as:

l(PV ) =
N
∑

i=1

log
∏

X∈V :Y =pa(X)

PX|Y (xi|yi) (11)

=
∑

X∈V :Y =pa(X)

N
∑

i=1

log PX|Y (xi|yi) (12)
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=
∑

X∈V :Y =pa(X)

∑

k∈Ω(X)

∑

j∈Ω(Y )

NXY (k, j) log PX|Y (k|j) (13)

= N
∑

X∈V :Y =pa(X)

∑

j∈Ω(Y )





NY (j)

N

∑

k∈Ω(X)

NXY (k, j)

NY (j)
log PX|Y (k|j)



 (14)

By a similar argument as above, we have

θML
X|Y (k|j) =

NXY (k, j)

NY (j)
(15)

for all X ∈ V .

3 Bayesian Estimation of Bayes network pa-

rameters

The Maximum Likelihood estimate is not always the best choice for the
esimate of a set of parameters. Sometimes we have prior knowledge that we
want to take into account, and sometimes the data is too scarce (especially
when the number of parent configurations is large) and ML overfits.

Entering prior info

Bayesian – conjugate prior Non-Bayesian (Smoothing)

The ML paradigm assumes that the model is estimated using the data only
and excluding other sources of knowledge about parameters or model struc-
ture. But, if prior knowledge exists and if it can be represented as a proba-
bility distribution over the space of models, then one can use the Bayesian
formulation of learning to combine the two sources of information.

In the Bayesian framework, the main object of interest is the posterior dis-
tribution over models given the observed data Pr[P |D]. By Bayes’ formula,
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the posterior is proportional to

Pr[P |D] ∝ Pr[P, D] = Pr[P ]
∏

x

∈ V P (x) (16)

In the above Pr[P ] represents the prior distribution over the class of models;
the second factor is P (D), the likelihood of the data given the model P .

The probability of an observation x is obtained by model averaging

Pr[x] =
∫

P (x)Pr[P |D] dP (17)

It is worth noting that, except for a few special cases that we will discuss
further neither Pr[x] nor the posterior Pr[P |D] are representable in closed
form. A common approach then is to approximate the posterior distribution
around its mode(s) for example by the Laplace approximation. Another
approach is to replace the integration in equation (17) by a finite sum over
a set M of models with high posterior probability.

Pr[x] =
∑

P∈M̂

P (x)Pr[P |D] (18)

This approximation is equivalent to setting Pr[P |D] to 0 for all the models
not in M̂. Consequently, the normalization constant in the above formula is
computed over M̂ only.

Finally, if we are to choose one model only to summarize the posterior dis-
tribution Pr[P |D] then a natural choice is the mean of the distribution. As
it will be shown the mean can sometimes be expressed as the MAP estimate
under a certain parameterization.

3.1 The Dirichlet prior

We will introduce now an important subclass of priors for parameters called
Dirichlet priors. The Dirichlet prior is the conjugate prior of the multinomial

distribution.
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Let z be a discrete random variable taking r values and let θj = Pz(j), j =
1, . . . r. Then, the probability distribution of an i.i.d. sample of size N from
Pz is given by

P (z1,...N) =
r
∏

j=1

θ
Nj

j (19)

where Nj , j = 1, . . . r represent the number of times the value j is observed
in and are called the sufficient statistics of the data. The sample itself is said
to obey a multinomial distribution.

The Dirichlet distribution is defined over the domain of θ1,... r and depends
on r real parameters N ′

1,... r > 0 by

D(θ1,... r; N
′
1,... r) =

Γ(
∑

j N ′
j)

∏

j Γ(N ′
j)

∏

j

θ
N ′

j
−1

j (20)

In the above Γ() represents the Gamma function defined by

Γ(p) =
∫ ∞

0
tp−1e−tdt. (21)

For any nonnegative integer n

Γ(n + 1) = n! (22)

The importance of the Dirichlet distribution in connection with a multino-
mially distributed variable resides in the following fact: If the parameters
θ of the multinomial distribution have as prior a Dirichlet distribution with
parameters N ′

j, j = 1, . . . r, then, after observing a sample with sufficient
statistics Nj , j = 1, . . . r, the posterior distribution of θ is a Dirichlet dis-
tribution with parameters N ′

j + Nj , j = 1, . . . r. This justifies denoting the
distribution’s parameters by N ′. One popular alternative parameterization
for the Dirichlet distribution is given by:

N ′ =
r
∑

j=1

N ′
j (23)

P ′
j =

N ′
j

N ′
j = 1, . . . r (24)

(25)
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Note that in this parameterization the means of the parameters θj are equal
to P ′

j . We say that the Dirichlet distribution is a conjugate prior for the
class of multinomial distributions. The property of having conjugate priors
is characteristic for the exponential family of distributions.

3.1.1 The Dirichlet prior in natural coordinates

The multinomial distribution was represented before as defined by the pa-
rameters θj , j = 1, . . . r. But there are infinitely many ways to parametrize
the same distribution. For each set of parameters y1,...ry

the corresponding
representation of the Dirichlet prior results from the well known change of
variable formula

D(y1,...ry
; N ′

1,...r−1) = D(θ1,... r(y1,...ry
); N ′

1,... r).|
∂θ

∂y
| (26)

with |∂y

∂θ
| representing the absolute value of the determinant of the Jacobian

of θ(y). Note that because of the presence of this factor, the maximum
of D(.; N ′

1,...r) has both a different value and a different position in each
parametrization. This dependence of the parametrization is one fundamental
drawback of MAP estimation which justifies the Bayesian and approximate
Bayesian approaches mentioned above.

By contrast, the mean of f(y)D(y; N ′) of any measurable function f over
any measurable set is independent of the parametrization. In particular, the
mean of the Dirichlet distribution is independent of the parametrization and
equal to

E[θj ] =
N ′

j
∑r

j′=1 N ′
j′

j = 1, . . . r (27)

Of special interest is the so called natural parametrization of the multinomial,
defined by r − 1 unconstrained parameters φ:

φi = log
θi

θr

i = 1, . . . r − 1. (28)
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The parameters φ take values in (−∞,∞) when θ1,...r > 0. The reverse
transformation from φ coordinates to θ coordinates is defined by:

θr =
1

1 +
∑r−1

i=1 eφi
(29)

θj =
eφj

1 +
∑r−1

i=1 eφi
, j = 1, . . . r − 1 (30)

(31)

The Jacobian of this transformation1 is (expressed in θ variables)

∣

∣

∣

∣

∣

∂φ

∂θ

∣

∣

∣

∣

∣

= θ1θ2 . . . θr (32)

In the natural parametrization, the Dirichlet distribution is expressed as

D(φ1,...r−1; N ′
1,...r) =

Γ(
∑r

j=1 N ′
j)

∏r
j=1 Γ(N

′
j)

r−1
∏

i=1

(

eφi

1 +
∑r−1

j=1 eφj

)N ′

i 1

(1 +
∑r−1

j=1 eφj )N ′

r

(33)
A remarkable property of the natural parametrization is that its mode coin-
cides in position with the mean. To see this, it suffices to equate to 0 the
partial derivatives of the Dirichlet distribution w.r.t the φ parameters. After
some calculations, one obtains

eφi

1 +
∑r−1

i′=1 eφi′
=

N ′
i

∑r
j=1 N ′

j

i = 1, . . . r − 1 (34)

or equivalently

θj =
N ′

i

N ′
j = 1, . . . r (35)

3.2 Dirichlet priors for graphical models

Heckerman, Geiger and Chickering 2005 (HGC) show that the assumptions
of likelihood equivalence which says that data should not help discriminate

1To have a square matrix, we express θr = 1 − θ1 − . . . − θr−1 and take the partial
derivatives of φ1:r−1 w.r.t θ1:r−1.
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between structures which represent the same probability distribution, pa-

rameter modularity which says that the parameters corresponding to an edge
of the tree should have the same prior every time the edge is present in
the tree and parameter independence which says that in any directed tree
parametrization the parameters of each edge are independent of anything
else. These combined with some weak technical assumptions2 imply that the
parameter prior is Dirichlet.

HGC also show that the likelihood equivalence constrains the Dirichlet priors
for all the parameter sets to share a common equivalent sample size N ′.

Alternatively, one can normalize the counts and express the Dirichlet prior
over all trees as a table of fictitious marginal probabilities P ′

Y for each subset
Y of variables plus an equivalent sample size N ′ that gives the strength of
the prior.

Note that two of the assumptions, likelihood equivalence and parameter mod-
ularity, make sense only if we consider multiple graph structures. I.e we
should take them into account only if we are also estimating model struc-
ture. If we are not, then some of the constraints on the (Dirichlet) prior can
be relaxed, as for example the constraint of having the same prior strenght
N ′.

The uninformative prior given by

P ′
X|Y (xy) =

1

rX

(36)

is valid since it represents the set of pairwise marginals of the uniform dis-
tribution over Ω(V )3.

If the Dirichlet prior is represented in the natural parameters and the em-
pirical distribution is P , with sample size N , then, from the fact that the
Dirichlet prior is a conjugate prior, it follows that finding the MAP parame-

2These technical assumptions assumptions amount to the positivity of the joint prior.
3This prior is called the BDeu prior in HGC. We note in passing that the uninformative

prior denoted there as the K2 metric is not a valid prior from the point of view of equations
(??).
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ters is equivalent to finding the ML parameters for

P̃ =
1

N + N ′
(N ′P ′ + NP ). (37)

Consequently, the parameters of the optimal model will be

θBayes
X|Y =

P̃XY

P̃Y

(38)

and, according to the previous section and equation (35) they will also rep-
resent the mean of the posterior distribution. Moreover, using the parameter
independence assumption, we can conclude that the optimal distribution
P Bayes itself is the mean of the posterior distribution given the structure.

4 Smoothing

Smoothing is essentially adjusting the ML estimates of discrete probabilities
in the case of little data. There are very many smoothing methods, some de-
veloped for very special situations and some with more general applicability.
We will discuss two classes of smoothing methods:

• shrinkage/backing off which applies to a hierarchy of discrete con-
ditional distributions

• discounting which applies to an discrete distribution taken separately
and involves essentially taking probability mass off the observed values
of a variable to spread it to the values with 0 counts

4.1 Discounting

4.1.1 Laplace or Dirichlet smoothing

The simplest (and least useful) discounting method is the Laplace smoothing.
It is equivalent with a Dirichlet prior with all fictitious counts equal to 1 (i.e
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we assume we have seen one more example of each value in ΩX). The method
can be summarized as: add 1 to each count and renormalize.

θLaplace
i =

Ni + 1

N + rX

for i = 1 : rX (39)

4.1.2 Witten-Bell discounting – probability of a new value

We look at the observation sequence as a binary process: either we observe
a value of X that was observed before, or we observe a new one. Assuming
that of the total of rX possible values r0 were observed and rX − r0 were
unobserved, the probability of observing a new value is p0 = r0

N
. We extrapo-

late by setting the total probability of the yet unseen values of X to p0. The
other probabiliy estimates are renormalized accordingly, yielding

θWB
i =

{

Ni

N
1

1+p0

= Ni

N+r0

Ni > 0
1

rX−r0

1
1+p0

= 1
rX−r0

r0

N+r0

Ni = 0
(40)

While Laplace smoothing and Ney-Essen smoothing (below) apply to any set
of observations, Witten-Bell smoothing makes sense only for the case when
some Ni counts are zero. If all Ni > 0 then W-B smoothing does nothing
(i.e p0 = 0).

WB smoothing has no parameter to choose. In this sense it presents an
advantage w.r.t Ney-Essen; it removes the subjective user choice and replaces
it with a principled method for estimating the mass of the unseen values.

4.1.3 Ney-Essen discounting – shave off some mass from every
value

In this method, a fixed amount δ ∈ (0, 1) is substracted from every non-zero
count. The total amount is then equally distributed to all counts. This
simple method works surprisingly well in practice.
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D =
∑

i

min(Ni, δ) (41)

θNE
i =

Ni − min(Ni, δ) + D/rX

N
(42)

This method is both general and flexible, and has the following advantage
over Laplace smoothing. For rX large and r0 small, i.e when the probability
mass is concentrated on a few values, D will be small too, because D ≤ δr0,
and consequently the mass D/rX ≤ δr0/rX distributed to the unobserved
values will be small too. On the other hand, if the N observation are dis-
tributed over a large number r0 of values, then we have reason to believe
that the unobserved values also have larger probability of appearing. This is
exaclty what Ney-Essen smoothing does in this case: since D will be much
larger than in the previous case, and thus the unseen values will receive more
mass.

While Laplace and WB always reduce the θi estimates (w.r.t to the ML
estimates θML

i for the observed values in order to provide for the unobserved
values, the NE smoothing may increase the non-zero zero θi’s whose counts
Ni are below δ. The intuition behind this is that any value i with Ni < δ
should be considered a rare value and should be treated in the same way, no
matter how many observations it actually has. Indeed, when δ > 1, the final
θi is the same for all values that have Ni = 0 and Ni = 1.

A rule of thumb for choosing the smoothing parameter is δ ∝ 1
N

. The
motivation for this fact is that if in N observations a value is observed once,
its probability is about 1/N (and if it’s observed zero times, its probability
is order 1/N or smaller).

4.2 Back-off or shrinkage – mixing with simpler models

This method smooths the probability estimates of a more detailed model
(i.e having more parameters) by the probabilities of a coarser model (i.e
simpler, with fewer parameters). The latter are more reliable having better
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data support. Under the name of shrinkage this class of methods has been
known in statistics for a while as standard variance reduction methods.

For instance, a model over word trigrams (billions of parameters) can be
backed off with a model over bigrams (only millions of parameters) which in
turn can be backed off with a model over unigrams (only thousand parame-
ters). Hence, a model in which a variable has two parents is backed off with
models with 1 and 0 parents (more independencies). One can also resort to
back-off models which bin the variable values. For example, bi- and tri-gram
models over words can be backed off by bi- or tri-gram models over parts of
speech.

Backing off represents mixing the detailed model of interest with the coarser
models. For example, in any Bayes net with pa(X) = {Y1, Y2, . . .} we can do
the following smoothing

θX|Y1Y2... = λ1θ
ML
X|Y1Y2... + λ2θ

ML
X|Y1

+ λ2θ
ML
X|Y2

+ . . . + λ4θ
ML
X + λ5θ

ML
X̃ |Ỹ1Ỹ2...

(43)

In the above, X̃, Ỹj represent “coarsened” or “binned” versions of Yj and the
λk’s are coefficients that sum to one in order to ensure that the result is a
valid distribution over ΩX .

The coefficients are estimated by cross-validation. More sophisticated meth-
ods are possible, and used for e.g. language models, whereby the λ coeffi-
cients, very many, depend on the parents, and their values depend on the
number of observations of a certain parent configuration. Under these condi-
tions, instead of cross-validation, one uses the EM algorithm (on the hold-out
set) to estimate the λ’s.

13


