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What is clustering? Problem and Notation

Informal definition Clustering = Finding groups in data

Notation
D = {x1, x2, . . . xn} a data set
n = number of data points

K = number of clusters (K << n)
∆ = {C1,C2, . . . ,CK} a partition of D into disjoint subsets

k(i) = the label of point i
L(∆) = cost (loss) of ∆ (to be minimized)

Second informal definition Clustering = given n data points, separate
them into K clusters

Hard vs. soft clusterings

Hard clustering ∆: an item belongs to only 1 cluster

Soft clustering γ = {γki}i=1:n
k=1:K

γki = the degree of membership of point i to cluster k∑
k

γki = 1 for all i

(usually associated with a probabilistic model)



(from [Nugent and Meila, 2010])



Paradigms

Depend on type of data, type of clustering, type of cost (probabilistic or not),
and constraints (about K , shape of clusters)

Data = vectors {xi} in Rd

Parametric Cost based [hard]
(K known) Model based [soft]

Non-parametric Dirichlet process mixtures [soft]
(K determined Information bottleneck [soft]
by algorithm) Modes of distribution [hard]

Gaussian blurring mean shift[Carreira-Perpinan, 2007] [hard]

Data = similarities between pairs of points [Sij ]i,j=1:n, Sij = Sji ≥ 0
Similarity based clustering

Graph partitioning spectral clustering [hard, K fixed, cost based]
typical cuts [hard non-parametric, cost based]

Affinity propagation [hard/soft non-parametric]



Classification vs Clustering

Classification Clustering

Cost (or Loss) L Expectd error many! (probabilistic or not)
Supervised Unsupervised

Generalization Performance on new Performance on current
data is what matters data is what matters

K Known Unknown
“Goal” Prediction Exploration Lots of data to explore!

Stage Mature Still young
of field
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Parametric clustering algorithms

Cost based

Single linkage (min spanning tree)

Min diameter

Fastest first traversal (HS initialization)

K-medians

K-means

Model based (cost is derived from likelihood)

EM algorithm

“Computer science”/”Probably correct” algorithms



Single Linkage Clustering

Algorithm Single-Linkage

Input Data D = {xi}i=1:n, number clusters K

1 Construct the Minimum Spanning Tree (MST) of D
2 Delete the largest K − 1 edges

Cost L(∆) = −mink,k′ distance(Ck ,Ck′)
where distance(A,B) = argmin

x∈A, y∈B
||x − y ||

Running time O(n2) one of the very few costs L that can be optimized in
polynomial time

Sensitive to outliers!





Minimum diameter clustering

Cost L(∆) = maxk max
i,j∈Ck

||xi − xj ||︸ ︷︷ ︸
diameter

Mimimize the diameter of the clusters

Optimizing this cost is NP-hard

Algorithms

Fastest First Traversal [Hochbaum and Shmoys, 1985] – a
factor 2 approximation for the min cost

For every D, FFT produces a ∆ so that

Lopt ≤ L(∆) ≤ 2Lopt

rediscovered many times



Algorithm Fastest First Traversal

Input Data D = {xi}i=1:n, number clusters K

defines centers µ1:K ∈ D
(many other clustering algorithms use centers)

1 pick µ1 at random from D
2 for k = 2 : K

µk ← argmax
D

distance(xi , {µ1:k−1})
3 for i = 1 : n (assign points to centers)

k(i) = k if µk is the nearest center to xi



K-medians clustering

Cost L(∆) =
∑

k

∑
i ∈ Ck ||xi − µk || with µk ∈ D

(usually) assumes centers chosen from the data points (analogy
to median)

Ex: Show that in 1D argmin
µ

∑
i |xi − µ| is the median of {xi}

optimizing this cost is NP-hard

has attracted a lot of interest in theoretical CS (general from
called “Facility location”



Integer Programming Formulation of K-medians

Define dij = ||xi − xj ||,
uij = 1 iff point i in cluster with center xj (0 otherwise),
yj = 1 iff point j is cluster center (0 otherwise)

min
u,y

∑
ij dijuij

s.t.
∑

j uij = 1 point i is in exactly 1 cluster for all i∑
j yj ≤ k there are at most k clusters

uij ≤ yj point i can only belong to a center for all i , j

Linear Programming Relaxation of K-medians

Define dij , yj = 1, uij as before, but yj , uij ∈ [0, 1]

(LP) min
u,y

∑
ij dijuij

s.t.
∑

j uij = 1∑
j yj ≤ k

uij ≤ yj



Algorithm K-Medians (variant of [Bradley and Mangasarian, 2005])

Input Data D = {xi}i=1:n, number clusters K

1 Solve (LP)
obtain fractionary “centers” y1:n and “assignments” u1:n,1:n

2 Sample K centers µ1 . . . µK by

P[µk = pointj] ∝ yj (without replacement)
3 Assign points to centers (deterministically)

k(i) = argmin
k
||xi − µk ||

Guarantees (Agarwal)

Given tolerance ε, confidence δ, K ′ = K (1 + 1
ε ) ln n

K , ∆K ′

obtained by K-medians with K ′ centers

L(∆K ′) ≤ (1 + ε)Lopt
K



K-means clustering

This is originally an algorithm for vector quantization [Lloyd, 1982]

Algorithm K-Means

Input Data D = {xi}i=1:n, number clusters K

Initialize centers µ1, µ2, . . . µK ∈ Rd at random

Iterate until convergence

1. for i = 1 : n (assign points to clusters ⇒ new clustering)

k(i) = argmin
k
||xi − µk ||

2. for k = 1 : K (recalculate centers)

µk =
1

|Ck |
∑
i∈Ck

xi (1)

Convergence

if ∆ doesn’t change at iteration m it will never change after that

provable: convergence in finite number of steps



The K-means cost

L(∆) =
n∑

i=1

||xi − µk(i)||2 =
K∑

k=1

∑
i∈Ck

||xi − µk ||2

“least-squares” cost (also called distortion)

Proposition The K-means algorithm decreases L(∆) at every step.

Sketch of proof

step 1: reassigning the labels can only decrease L Ex: show this

step 2: reassigning the centers µk can only decrease L
because µk as given by (1) is the solution to

µk = min
µ∈Rd

∑
i∈Ck

||xi − µ||2Ex: show this (2)

Therefore, K-means converges to a local minimum of the cost L
Initialization matters (see later)



Equivalent cost functions

The distortion can also be expressed as

sum of (squared) intracluster distances

L(∆) =
1

2

K∑
k=1

∑
i ,j∈Ck

||xi − xj ||2 + constant (3)

(negative) sum of (squared) intercluster distances

L(∆) = −1

2

K∑
k=1

∑
i∈Ck

∑
j 6∈Ck

||xi − xj ||2 + constant (4)

Proof of (3)
Replace µk as expressed in (1) in the expression of L, then rearrange the terms
Proof of (4)∑

k

∑
i,j∈Ck

||xi − xj ||2 =
n∑

i=1

n∑
j=1

||xi − xj ||2︸ ︷︷ ︸
independent of ∆

−
∑

k

∑
i∈Ck

∑
j 6∈Ck

||xi − xj ||2



Symmetries between costs

K-means cost L(∆) = minµ1:K

∑
k

∑
i∈Ck
||xi − µk ||2

K-medians cost L(∆) = minµ1:K

∑
k

∑
i∈Ck
||xi − µk ||

K-means cost L(∆) =
∑

k

∑
i,j∈Ck

||xi − xj ||2

min diameter cost L2(∆) = maxk maxi,j∈Ck
||xi − xj ||2



K-means: Practical issues I

Initialization of µ1:K .

The Power Initialization (see also [Bubeck et al., 2009])

1 pick µ0
1:K ′ at random from data set, where K ′ = O(K log K )

(this assures that each cluster has at least 1 center w.h.p)

2 run 1 step of K-means

3 remove all centers µ0
k that have few points, e.g |Ck | < n

eK ′

4 from the remaining centers select K centers by Fastest First
Traversal

1 pick µ1 at random from the remaining {µ0
1:K ′}

2 for k = 2 : K , µk ← argmax
µ0

k′
minj=1:k−1 ||µ0

k′ − µj ||, i.e next µk

is furthest away from the already chosen centers

5 continue with the standard K-means algorithm



K-means: Practical issues II

This initialization has been shown experimentally and theoretically to work
well.

More precisely K ′ = K̃(ln K̃ + ln 1
δ

) where K̃ = n/(size of smallest cluster) and e.g δ = 0.05, 1− δ =desired level of

confidence

Ex: Find an (approximate) formula for P[sample all Ck |K ′] as a
function of K ′ when there are K clusters and pk = |Ck |/n is the
probability of sampling from cluster k . Simplify by taking pk = 1/K
for all K . Plot the function obtained and show that K ′ = K is
inappropriate.

Preprocessing

centering xi ← xi −
P

i xi

n
(not essential but numerically useful)

scaling of different coordinates affects algorithms’ outcome!



Coresets approach to K-medians and K-means

A weighted subset of D is a (K , ε) coreset iff for any µ1:K ,

|L(µ1:K ,A)− L(µ1:K ;D)| ≤ εL(µ1:K ;D)

Note that the size of A is not K

Finding a coreset (fast) lets use find fast algorithms for clustering a large D
“fast” = linear in n, exponential in ε−d , polynomial in K

Theorem[Har-Peled and Mazumdar, 2004],Theorem 5.7
One can compute an (1 + ε)-approximate K-median of a set of n points in

time O(n + K 5 log9 n + gK 2 log5 n) where g = e [C/ε log(1+1/ε)]d−1

(where d
is the dimension of the data)

Theorem[Har-Peled and Mazumdar, 2004],Theorem 6.5
One can compute an (1 + ε)-approximate K-means of a set of n points in
time O(n + K 5 log9 n + KK+2ε−(2d+1) logK+1 n logK 1

ε ).



Model based clustering: Mixture models

The mixture density

f (x) =
K∑

k=1

πk fk(x) with πk ≥ 0,
K∑

k=1

πk = 1 (5)

fk(x) = the components of the mixture

each is a density

if fk = Normalµk ,Σk
we call it a mixture of Gaussians

will assume fk Gaussian for simplicity

πk = the mixing coefficients/mixing proportions (a convex combination)

A probabilistic model for clustering

Degree of membership

γki
def
= P[xi ∈ Ck ] =

πk fk(x)

f (x)
for i = 1 : n, k = 1 : K (6)





The Maximum Likelihood Principle

Given data D = {x1:n} sampled i.i.d from some unknown P∗

Model Pθ(x) depends on parameter θ

Problem: How to estimate θ?

Principle: Maximum Likelihood

Likelihood(θ|D) = Pθ(D) =
∏n

i=1 Pθ(xi )

Often convenient to use log-likelihood l(θ)

l(θ) =
n∑

i=1

ln Pθ(xi )

Reason: many Pθ are expressed with exponential functions (e.g the
Normal distribution)



Criterion for clustering: Max likelihood

denote θ = (π1:K , µ1:K , Σ1:K ) (the parameters of the mixture model)

Define likelihood P[D|θ] =
∏n

i=1 f (xi )

Typically, we use the log likelihood

l(θ) = ln
n∏

i=1

f (xi ) =
n∑

i=1

ln
∑

k

πk fk(xi ) (7)

denote θML = argmax
θ

l(θ)

θML determines a soft clustering γ

a soft clustering γ determines a θ (see later)

Therefore we can write
L(γ) = −l(θ(γ))



Algorithms for model-based clustering

Maximize the (log-)likelihood w.r.t θ

directly - (e.g by gradient ascent in θ)

by the EM algorithm (very popular!)

indirectly, w.h.p. by ”computer science” algorithms

w.h.p = with high probability (over data sets)



The Expectation-Maximization (EM) Algorithm

Algorithm Expectation-Maximization (EM)

Input Data D = {xi}i=1:n, number clusters K

Initialize parameters π1:K ∈ R, µ1:K ∈ Rd , Σ1:K ∈ Rd×dat random1

Iterate until convergence

E step (Optimize clustering) for i = 1 : n, k = 1 : K

γki =
πk fk(x)

f (x)

M step (Optimize parameters) let Γk =
∑m

i=1 γki , k = 1 : K (note:∑
k Γk = n

πk =
Γk

n
, k = 1 : K

µk =
n∑

i=1

γki

Γk
xi

Σk =

∑n
i=1 γki (xi − µk)(xi − µk)T

Γk

Γk represents the “number of points” in cluster k

π1:K , µ1:K ,Σ1:K are the maximizers of lc(θ) in (11)
1Σk need to be symmetric, positive definite matrices



The EM Algorithm – Motivation

Define the indicator variables

zik =

{
1 if i ∈ Ck

0 if i 6∈ Ck
(8)

denote z̄ = {zki}i=1:n
k=1:K

Define the complete log-likelihood

lc(θ, z̄) =
n∑

i=1

K∑
k=1

zki lnπk fk(xi ) (9)

E [zki ] = γki

Then

E [lc(θ, z̄)] =
n∑

i=1

K∑
k=1

E [zki ][lnπk + ln fk(xi )] (10)

=
n∑

i=1

K∑
k=1

γki lnπk +
n∑

i=1

K∑
k=1

γki ln fk(xi )] (11)



If θ known, γki can be obtained by (6)
(Expectation)

If γki known, πk , µk ,Σk can be obtained by separately maximizing the
terms of E [lc ] (Maximization)



Brief analysis of EM

Q(θ, γ) =
n∑

i=1

K∑
k=1

γki lnπk fk(xi )︸ ︷︷ ︸
θ

each step of EM increases Q(θ, γ)

Q converges to a local maximum

at every local maxi of Q, θ ↔ γ are fixed point

Q(θ∗, γ∗) local max for Q ⇒ l(θ∗) local max for l(θ)

under certain regularity conditions θ −→ θML

[McLachlan and Krishnan, 1997]

the E and M steps can be seen as projections [Neal and Hinton, 1998]



Probablistic alternate projection view of

EM[Neal and Hinton, 1998]

let zi = which gaussian generated i? (random variable), X = (x1:n),
Z = (z1:n)

Redefine Q
Q(P̃, θ) = L(θ)− KL(P̃||P(Z |X , θ)

where P(X ,Z |θ) =
∏

i

∏
k P[zi = k]P[xi |θk ]

P̃(Z ) is any distribution over Z ,

KL(P(w)||Q(w)) =
∑

w P(w) ln P(w)
Q(w) the Kullbach-Leibler divergence

Then,

E step maxP̃ Q ⇔ KL(P̃||P(Z |X , θ)

M step maxθ Q ⇔ KL(P(X |Z , θold)||P(X |θ))

Interpretation: KL is “distance”, “shortest distance” = projection



The M step in special cases

Note that the expressions for µk ,Σk = expressions for µ,Σ in the normal
distribution, with data points xi weighted by γki

Γk

M step
general case Σk =

∑n
i=1

γki

Γk
(xi − µk)(xi − µk)T

Σk = Σ Σ ←
Pn

i=1

PK
k=1 γki (xi−µk )(xi−µk )T

n
“same shape & size” clusters

Σk = σ2
k Id σ2

k ←
Pn

i=1 γki ||xi−µk ||2
dΓk

“round” clusters

Σk = σ2Id σ2 ←
Pn

i=1

PK
k=1 γki ||xi−µk ||2

nd
“round, same size” clusters

Ex: Prove the formulas above

Note also that K-means is EM with Σk = σ2Id , σ
2 → 0 Ex: Prove it



More special cases [Banfield and Raftery, 1993] introduce the following description for a covariance matrice in terms of volume,
shape, alignment with axes (=determinant, trace, e-vectors). The letters below mean: I=unitary (shape, axes), E=equal (for all
k), V=unequal

EII: equal volume, round shape (spherical covariance)

VII: varying volume, round shape (spherical covariance)

EEI: equal volume, equal shape, axis parallel orientation (diagonal covariance)

VEI: varying volume, equal shape, axis parallel orientation (diagonal covariance)

EVI: equal volume, varying shape, axis parallel orientation (diagonal covariance)

VVI: varying volume, varying shape, equal orientation (diagonal covariance)

EEE: equal volume, equal shape, equal orientation (ellipsoidal covariance)

EEV: equal volume, equal shape, varying orientation (ellipsoidal covariance)

VEV: varying volume, equal shape, varying orientation (ellipsoidal covariance)

VVV: varying volume, varying shape, varying orientation (ellipsoidal covariance)

(from [Nugent and Meila, 2010])



EM – Practical issues

Initialization is important

Use Power initialization (with EM replacing K-means)

Exact maximization in M step is not essential.
Sufficient to increase Q.
This is called Generalized EM



”Computer science” algorithms for mixture models

Assume clusters well-separated (S)

e.g ||µk − µl || ≥ C max(σk , σl)

with σ2
k = max eigenvalue(Σk)

true distribution is mixture

of Gaussians

of log-concave fk ’s (i.e. ln fk is concave function)

then, w.h.p. (n,K , d ,C )

we can label all data points correctly

⇒ we can find good estimate for θ

Even with (S) this is not an easy task in high dimensions

Because fk(µk) → 0 in high dimensions (i.e there are few points from
Gaussian k near µk)



The Vempala-Wang

algorithm[Vempala and Wang, 2004]

Idea

Let H = span(µ1:K )

Projecting data on H
≈ preserves ||xi − xj || if k(i) 6= k(j)

≈ reduces ||xi − xj || if k(i) = k(j)

density at µk increases

(Proved by Vempala & Wang, 2004[Vempala and Wang, 2004]) H ≈ K -th
principal subspace of data

Algorithm Vempala-Wang (sketch)

1 Project points {xi} ∈ Rd on K − 1-th principal subspace ⇒ {yi} ∈ RK

2 do distance-based ”harvesting” of clusters in {yi}



Other ”CS” algorithms I

[Dasgupta, 2000] round, equal sized Gaussian, random projection

[Arora and Kannan, 2001] arbitrary shaped Gaussian, distances

[Achlioptas and McSherry, 2005] log-concave, principal subspace projection

Example Theorem (Achlioptas & McSherry, 2005) If data come from K
Gaussians, n >> K (d + log K )/πmin, and

||µk − µl || ≥ 4σk

√
1/πk + 1/πl + 4σk

√
K log nK + K 2

then, w.h.p. 1− δ(d ,K , n), their algorithm finds true labels
Good

theoretical guarantees

no local optima

suggest heuritics for EM K-means

project data on principal subspace (when d >> K )



Other ”CS” algorithms II

But

strong assuptions: large separation (unrealistic), concentration of fk ’s (or fk
known), K known

try to find perfect solution (too ambitious)



A fundamental result

The Johnson-Lindenstrauss Lemma For any ε ∈ (0, 1] and any integer n, let
d ′ be a positive integer such that d ′ ≤ (ε2/2− ε3/3) ln n. Then for any set D of
n points in Rd , there is a map f : Rd → Rd′ such that for all u, v ∈ V ,

(1− ε)||u − v ||2 ≤ ||f (u)− f (v)|| ≤ (1 + ε)||u − v ||2 (12)

Furthermore, this map can be found in randomized polynomial time.

note that the embedding dimension d ′ does not depend on the original
dimension d , but depends on n, ε

[Dasgupta and Gupta, 2002] show that: the mapping f is linear and that
w.p. 1− 1

n a random projection (rescaled) has this property

their proof is elementary Projecting a fixed vector v on a a random subspace is the same as projecting a

random vector v on a fixed subspace. Assume v = [v1, . . . vd ] with v ∼ i.i.d. and let ṽ = projection of v on axes

1 : d′. Then E [||ṽ||2 = d′E [v2
j ] = d′

d
E [||v||2]. The next step is to show that the variance of ||ṽ||2 is very small

when d′ is sufficiently large.



A two-step EM algorithm

[Dasgupta and Schulman, 2007]

Assumes K spherical gaussians, separation ||µtrue
k − µtrue

k′ ≥ C
√

dσk

1 Pick K ′ = O(K ln K ) centers µ0
k at random from the data

2 Set σ0
k = d

2 mink 6=k′ ||µ0
k − µ0

k′ ||2, π0
k = 1/K ′

3 Run one E step and one M step =⇒ {π1
k , µ

1
k , σ

1
k}k=1:K ′

4 Compute “distances” d(µ1
k , µ

1
k′) =

||µ1
k−µ

1
k′ ||

σ1
k−σ

1
k′

5 Prune all clusters with π1
k ≤ 1/4K ′

6 Run Fastest First Traversal with distances d(µ1
k , µ

1
k′) to select K of the

remaining centers. Set π1
k = 1/K .

7 Run one E step and one M step =⇒ {π2
k , µ

2
k , σ

2
k}k=1:K

Theorem For any δ, ε > 0 if d large, n large enough, separation C ≥ d1/4 the Two
step EM algorithm obtains centers µk so that

||µk − µtrue
k || ≤ ||mean(C true

k )− µtrue
k ||+ εσk

√
d



Experimental exploration [Srebro et al., 2006] I

High d

True model: centers µ∗k at corners of hypercube, Σ∗k = σId spherical equal
covariances, π∗k = 1/K

n, K , separation variable

Algorithm: EM with Power initialization and projection on ∗K − 1)-th
principal subspace



Experimental exploration [Srebro et al., 2006] II

figures from [Srebro et al., 2006]



Experimental exploration [Srebro et al., 2006] III



Experimental exploration [Srebro et al., 2006] IV

Practical limits vs theoretical limits

figures from [Srebro et al., 2006]
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Selecting K

Run clustering algorithm for K = Kmin : Kmax

obtain ∆Kmin
, . . . ∆Kmax or γKmin

, . . . γKmax

choose best ∆K (or γK ) from among them

Typically increasing K ⇒ cost L decreases

(L cannot be used to select K )

Need to ”penalize” L with function of number parameters



Selecting K for mixture models

The BIC (Bayesian Information) Criterion

let θK = parameters for γK

let #θK =number independent parameters in θK

e.g for mixture of Gaussians with full Σk ’s in d dimensions

#θK = K − 1︸ ︷︷ ︸
π1:K

+ Kd︸︷︷︸
µ1:K

+ Kd(d − 1)/2︸ ︷︷ ︸
Σ1:K

define

BIC (θK ) = l(θK )− #θK
2

ln n

Select K that maximizes BIC (θK )

selects true K for n→∞ and other technical conditions (e.g parameters in compact set)



Number of Clusters vs. BIC EII (A), VII (B),

EEI (C), VEI (D), EVI (E), VVI (F), EEE (G), EEV (H), VEV

(I), VVV (J)

EEV, 8 Cluster Solution

(from [Nugent and Meila, 2010])



Number of Clusters vs. BIC EII (A), VII (B),

EEI (C), VEI (D), EVI (E), VVI (F), EEE (G), EEV (H), VEV

(I), VVV (J)

EEV, 8 Cluster Solution

(from [Nugent and Meila, 2010])



Selecting K for hard clusterings

based on statistical testing: the gap statistic (Tibshirani, Walther, Hastie,
2000)

X-means [Pelleg and Moore, 2000] heuristic: splits/merges clusters based
on statistical tests of Gaussianity

Stability methods



The gap statistic

Idea

for some cost L compare L(∆K ) with its expected value under a null

distribution

choose null distribution to have no clusters

Gaussian (fit to data)

uniform with convex support

uniform over K0 principal components of data

null value = EP0 [LK ,n] the expected value of the cost of
clustering n points from P0 into K clusters

the gap
g(K ) = EP0 [LK ,n]− L(∆K ) = L0

K − L(∆K )

choose K∗ corresponding to the largest gap

nice: it can also indicate that data has no clusters



Practicalities

L0
K = EP0 [LK ,n] can rarely be computed in closed form

(when P0 very simple)

otherwise, estimate L0
K be Monte-Carlo sampling

i.e generate B samples from P0 and cluster them

if sampling, variance s2
K of estimate L̂0

K must be considered
s2
K is also estimated from the samples

selection rule: K∗ = smallest K such that g(K ) ≥ g(K + 1)− sK+1

favored LV (∆) =
∑

k
1
|Ck |

∑
i∈Ck
||xi − µk ||2 ≈ sum of cluster variances



Stability methods for choosing K

like bootstrap, or crossvalidation

Idea (implemented by [Ben-Hur et al., 2002])

for each K

1 perturb data D → D′

2 cluster D′ → ∆′K
3 compare ∆K ,∆

′
K . Are they similar?

If yes, we say ∆K is stable to perturbations

Fundamental assumption If ∆K is stable to perturbations then K is the
correct number of clusters

these methods are supported by experiments (not extensive)

not YET supported by theory . . . see [von Luxburg, 2009] for a
summary of the area



A stability based method for model-based

clustering

The algorithm of [Lange et al., 2004]

1 divide data into 2 halves D1, D2 at random

2 cluster (by EM) D1 → ∆1, θ1

3 cluster (by EM) D2 → ∆2, θ2

4 cluster D1 using θ2 → ∆′1
5 compare ∆1,∆

′
1

6 repeat B times and average the results

repeat for each K

select K where ∆1,∆
′
1 are closest on average (or most times)



Clustering with outliers

What are outliers?

let p = proportion of outliers (e.g 5%-10%)

Remedies

mixture model: introduce a K + 1-th cluster with large (fixed)
ΣK+1, bound Σk away from 0

K-means and EM
robust means and variances

e.g eliminate smallest and largest pnk/2 samples in mean
computation (trimmed mean)

K-medians [Charikar and Guha, 1999]

replace Gaussian with a heavier-tailed distribution (e.g. Laplace)

single-linkage: do not count clusters with < r points

Is K meaningful when outliers present?

alternative: non-parametric clustering
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Methods based on non-parametric density

estimation

Idea The clusters are the isolated peaks in the (empirical) data density

group points by the peak they are under

some outliers possible

K = 1 possible(no clusters)

shape and number of clusters K determined by algorithm

structural parameters

smoothness of the density estimate

what is a peak

Algorithms

peak finding algorithms Mean-shift algorithms

level sets based algorithms

Nugent-Stuetzle, Support Vector clustering

Information Bottleneck [Tishby and Slonim, 2000]



Kernel density estimation

Input data D ⊆ Rd

Kernel function K (z)

parameter kernel width h (is a smoothness parameter)

Output f (x) a probability density over Rd

f (x) =
1

Nhd

n∑
i=1

K

(
x − xi

h

)

f is sum of Gaussians centered on each xi

f is smoother (less variation) if h larger

caveat: dimension d can’t be too large



The kernel function

Example K (z) = 1
(2π)d/2 e−||z||

2/2, z ∈ Rd is the Gaussian kernel

In general

K () should represent a density on Rd , i.e K (z) ≥ 0 for all z and∫
K (z)dz = 1

K () symmetric around 0, decreasing with ||z ||
In our case, K must be differentiable



Mean shift algorithms

Idea find points with ∇f (x) = 0

Assume K (z) = e−||z||
2/2/
√

2π Gaussian kernel

∇f (x) = − 1

Nhd

n∑
i=1

K (
x − xi

h
)(x − xi )/h

Local max of f is solution of implicit equation

x =

∑n
i=1 xiK ( x−xi

h )∑n
i=1 K ( x−xi

h )︸ ︷︷ ︸
the mean shiftm(x)

Algorithm Simple Mean Shift

Input Data D = {xi}i=1:n, kernel K (z), h

1 for i = 1 : n

1 x ← xi

2 iterate x ← m(x) until convergence to mi

2 group points with same mi in a cluster



Remarks

mean shift iteration guaranteed to converge to a max of f

computationally expensive

a faster variant...

Algorithm Mean Shift (Comaniciu-Meer)

Input Data D = {xi}i=1:n, kernel K (z), h

1 select q points {xj}j=1:q = Dq ⊆ D
that cover the data well

2 for j ∈ Dq

1 x ← xj

2 iterate x ← m(x) until convergence to mj

3 group points in Dq with same mj in a cluster

4 assign points in D \ Dq to the clusters by the nearest-neighbor method

k(i) = k(argmin
j∈Dq

||xi − xj ||)



Gaussian blurring mean shift

Idea

like Simple Mean Shift but points are shifted to new locations

the density estimate f changes

becomes concentrated around peaks very fast

Algorithm Gaussian Blurrring Mean Shift (GBMS)

Input Data D = {xi}i=1:n, Gaussian kernel K (z), h

1 Iterate until STOP

1 for i = 1 : n compute m(xi )

2 for i = 1 : n, xi ← m(xi )

Remarks

all xi converge to a single point

⇒ need to stop before convergence



Empirical stopping criterion [Carreira-Perpinan, 2007]

define et
i = ||x t

i − x t−1
i || the change in xi at t

define H(et) the entropy of the histogram of {et
i }

STOP when
∑n

i=1 et
i /n <tol OR |H(et)− H(et−1)| <tol’

Convergence rate If true f Gaussian, convergence is cubic

||x t
i − x∗|| ≤ C ||x t−1

i − x∗||3

very fast!!



Algorithm Nugent-Stuetzle

Input Data D = {xi}i=1:n, kernel K (z)

1 Compute KDE f (x) for chosen h

2 for levels 0 < l1 < l2 < . . . < lr < . . . < lR ≥ supx f (x)

1 find level set Lr = {x | f (x) ≥ lr} of f

2 if Lr disconnected then each connected component is a cluster
→ (Cr ,1,Cr ,2, . . .Cr ,Kr )

Output clusters {(Cr ,1,Cr ,2, . . .Cr ,Kr )}r=1:R



Remarks

every cluster Cr ,k ⊆ some cluster Cr−1,k′

therefore output is hierarchical clustering

some levels can be pruned (if no change, i.e. Kr = Kr−1)

algorithm can be made recursive, i.e. efficient

finding level sets of f tractable only for d = 1, 2

for larger d , Lr = {xi ∈ D | f (xi ) ≥ lr}
to find connected components

for i 6= j ∈ Lr

if f (txi + (1− t)xj) ≥ lr for t ∈ [0, 1]
then k(i) = k(j)

confidence intervals possile by resampling



Cluster tree with 13 leaves (8 clusters, 5 artifacts)

(from [Nugent and Meila, 2010])



Support Vector (SV) clustering

Idea same as for Nugent-Stuetzle, but use kernelized density estimator instead of
KDE

Algorithm SV

Input data D, parameters q kernel width, p ∈ (0, 1) proportion of outliers

1 construct a 1-class SVM with parameters q, C = 1/np
this is equivalent to enclosing the data in a sphere in feature space

for any x its distance from center of sphere is

R2(x) = K (x , x)− 2
∑

j

αjK (x , xj) +
∑
i,j

K (xi , xj)

for xi support vector, R(xi ) = R (same for all)

2 for all pairs i , j = 1 : n

i , j in same cluster if segment [i , j ] is within sphere with radius
R in feature space

practically, test if R(txi + (1− t)xj) < R for t on a grid over
[0,1]



Remarks

the kernel used by SV is K (x , x ′) = e−q||x−x′||2

q controls boundary smoothness

SV’s lie on cluster boundaries, ”margin error” points lie outside clusters (are
outliers)

SV theory margin errors
n → 1

nC = p for large n

hence p controls the proportion of outliers

p, q together control K
p larger, q smaller ⇒ K smaller



The Dirichlet distribution

Z ∈ {1 : r} a discrete random variable, let θj = Pz(j), j = 1, . . . r .

Multinomial distribution Probability of i.i.d. sample of size N from Pz

P(z1,...N) =
r∏

j=1

θ
Nj

j

where Nj = #the value j is observed, j = 1, . . . r

N1:r are the sufficient statistics of the data.

The Dirichlet distribution is defined over domain of θ1,... r , with real
parameters N ′1,... r > 0 by

D(θ1,... r ; N ′1,... r ) =
Γ(
∑

j N ′j )∏
j Γ(N ′j )

∏
j

θ
N′j−1

j

where Γ(p) =
∫∞

0
tp−1e−tdt.



Dirichlet process mixtures

Model-based

generalization of mixture models to

infinite K

Bayesian framework

denote θk = parameters for component fk

assume fk(x) ≡ f (x , θk) ∈ {f (x , θ)}
assume prior distributions for parameters g0(θ)

prior with hyperparameter α > 0 on the number of clusters

very flexible model



A sampling model for the data

Example: Gaussian mixtures, d = 1, σk = σ fixed
θ = µ

prior for µ is Normal0,σ2
0 Id

Sampling process

for i = 1 : n sample xi , k(i) as follows

denote {1 : K} the clusters after step i − 1

define nk the size of cluster k after step i − 1

1

k(i) =

{
k w.p nk

i−1+α , k = 1 : K

K + 1 w.p α
i−1+α

(13)

2 if k(i) = K + 1 sample µi ≡ µK+1 from Normal(0σ2
0)

3 sample xi from Normal(µk(i), σ
2)

can be shown that the distribution of x1:n is interchangeable (does not
depend on data permutation)



The hyperparameters

σ0 controls spread of centers

should be large

α controls number of cluster centers

α large ⇒ many clusters

cluster sizes non-uniform (larger clusters attract more new points)

many single point clusters possible

General Dirichlet mixture model

cluster densities {f (x , θ)}
parameters θ sampled from prior g0(θ, β)

cluster membership k(i) sampled as in (13)

xi sampled from f (x , θk(i))

Model Hyperparameters α, β



Clustering with Dirichlet mixtures

The clustering problem

α, g0, β, {f } given

D given

wanted θ1:n (not all distinct!)

note:

θ1:n determines a hard clustering ∆

Estimating θ1:n cannot be solved in closed form
Usually solved by MCMC (Markov Chain Monte Carlo) sampling



Clustering with Dirichlet mixtures via MCMC

MCMC estimation for Dirichlet mixture

Input α, g0, β, {f }, D
State cluster assignments k(i), i = 1 : n,

parameters θk for all distinct k

Iterate 1 for i = 1 : n (reassign data to clusters)
1 resample k(i) by

k(i) =

{
existing k w.p ∝ nk−1

n−1+α f (xi , θk)

new cluster w.p α
n−1+α

∫
f (xi , θ)g0(θ)dθ

(14)

2 if k(i) is new label, sample a new θk(i) ∝ g0f (xi , θ)

2 for k ∈ {k(1 : n)} (resample cluster parameters)
1 sample θk from posterior gk(θ) ∝ g0(θ, β)

∏
i∈Ck

f (xi , θ)

gk can be computed in closed form if g0 is conjugate prior

Output a state with high posterior



Summary: Parametric vs. non-parametric

Parametric clustering

Optimizes a cost L
Most costs are NP-hard to optimize

Assumes more detailed knowledge of cluster shapes

Assumes K known (But there are wrapper methods to select K )

gets harder with larger K

Older, more used and studied

Non-parametric clustering

density-based methods have no cost function

Dirichlet clustering samplers posterior of k(1 : n), {θk} given D
do not depend critically on initialization

K and outliers selected automatically, naturally

require hyperparameters (= smoothness parameters)

Note that Dirichlet mixture is inbetween parametric and non-parametric



When to use

Parametric

shape of clusters known

K not too large or known

clusters of comparable sizes

Non-parametric (density based)

shape of clusters arbitrary

K large or many outliers

clusters sizes in large range (a few large clusters and many small
ones)

dimension d small (except for SV)

lots of data

Dirichlet mixtures

shape of clusters known

clusters sizes in large range
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Similarity based clustering

Paradigm: the features we observe are measures of similarity/dissimilarity
between pairs of data points, e.g

points features
Image segmentation pixels distance in color space or location, sepa-

rated by a contour, belong to same tex-
ture

Social network people friends, coworkers, phone calls, emails
Text analysis words appear in same context

The features are summarized by a single similarity measure Sij

e.g Sij = e
P

k αk featurek (i ,j) for all points i , j

symmetric Sij = Sji

non-negative Sij ≥ 0

We want to put points that are similar to each other in the same cluster,
dissimilar points in different clusters

Problem is often cast as a graph cut problem

points = graph nodes, similarity Sij = weight of edge ij



Paradigms for grouping

Graph cuts

remove some edges =⇒ disconnected graph

the groups are the connected components

By similar behavior

nodes i , j in the same group iff i , j have the same pattern of connections
w.r.t other nodes

By Embedding

map nodes V = {1, 2, . . . , n} −→ {x1, x2, . . . , xn} ∈ Rd then use standard
classification and clustering methods



Definitions

V = {1, 2, . . . , n}
node degree or volume

Di =
∑
j∈V

Sij

volume of cluster C ⊆ V
DC =

∑
i∈C

Di

cut between subsets C ,C ′ ⊆ V ∑
i∈C

∑
j∈C ′

Sij

Multiway Normalized Cut of a partition ∆ = {C1:K} of V

MNCut(∆) =
K∑

k=1

∑
k′ 6=k

Cut(Ck ,Ck′)

DCk

in particular, for K = 2,

MNCut(C , C ′) = Cut(C , C ′)

 
1

DC

+
1

DC′

!



Motivation for MNCut



A random walks view

Define

Pij =
Sij

Di
for all i , j ∈ V

in matrix notation P = D−1S where P = [Pij ], D = diag(D1, . . .Dn)

P defines a random walk over the graph nodes V



Grouping from the random walks point of view

Idea: group nodes together if they transition in the same way to other
clusters



... is the same as grouping by embedding

embedding of V = mapping from V into Rd

Wanted: similar points embedded near each other

ideally, points in the same cluster mapped to the same point in Rd



Some questions

Not all graphs embed perfectly

How many dimensions do we need?

Nice, but we need to know the clusters in advance. . .



Lumpability

A vector v is piecewise constant w.r.t a clustering ∆ iff vi = vj whenever
i , j in same C ∈ ∆

Theorem [Lumpability][Meila&Shi 2001] Let S be a similarity matrix and ∆
a clustering with K clusters. Then P has K piecewise constant eigenvectors
w.r.t ∆ iff ∑

j∈C ′

Pij = RCC ′ whenver i ∈ C , for all C ,C ′ ∈ ∆



The spectral mapping



Spectral clustering in a nutshell



Spectral clustering

An algorithm based on [Meilă and Shi, 2001b] and [Ng et al., 2002].
Spectral Clustering Algorithm

Input Similarity matrix S , number of clusters K

1 Transform S : Set Di =
∑n

j=1 Sij , j = 1 : n the node degrees.
Form the transition matrix P = [Pij ]

n
ij=1 with

Pij ← Sij/Di , for i , j = 1 : n

2 Compute the largest K eigenvalues λ1 = 1 ≥ λ2 ≥ . . . ≥ λK and
eigenvectors v1, . . . vK of P.

3 Embed the data in principal subspace Let V = [ v2 v3 . . . vK ] ∈ Rn×K ,
xi ← i-th row of V .

4 (orthogonal initialization) Find K initial centers by

1 take µ1 randomly from x1, . . . xn

2 for k = 2, . . .K set µk = argminxi
maxk ′<k µ

T
k ′xi .

5 Run the K-means algorithm on the “data” x1:n starting from the centers
µ1:K .



Properties of spectral clustering

Arbitrary cluster shapes (main advantage)

Elegant mathematically

Practical up to medium sized problems

Running time (by Lanczos algorithm) O(nk)/iteration.

Works well when K known, not too large

estimating K [Azran and Ghahramani, 2006]

Depend heavily on the similarity function (main problem)

learning the similarities
[Meilă and Shi, 2001a],[Bach and Jordan, 2006],[Meilă et al., 2005],[Shortreed and Meilă, 2005]

Outliers become separate clusters (user must adjust K accordingly!)

Very popular, many variants which aim to improve on the above

Diffusion maps [Nadler et al., 2006]: normalize the eigenvectors λt
kvk

Practical fix, when K large: only compute a fixed number of eigenvectors
d < K . This avoids the effects of noise in lower ranked eigenvectors



Affinity propagation

Idea Each item i ∈ D finds an exemplar item k ∈ D to “represent” it

Affinity Propagation is to spectral clustering what Mean Shift is to K-means

number of exemplars not fixed in advance

quantities of interest

similarities sij , i 6= j (given)

availability aik of k for i = how much support there is from
other items for k to be an exemplar

responsibility rik that measures how fit is k to represent i , as
compared to other possible candidates k ′.

diagonal elements sii represent self-similarities

larger sii ⇒ more likely i will become an exemplar ⇒ more
clusters



Affinity Propagation

Affinity Propagation Algorithm [Frey and Dueck, 2007]

Input Similarity matrix S = [sik ]nik=1, parameter λ = 0.5

Iterate the following steps until convergence

1 aik ← 0 for i , k = 1 : n

2 for all i

1 Find the best exemplar for i : s∗ ← maxk(sik + aik),
A∗i ← argmax

k
(sik + aik) (can be a set of items)

2 for all k update responsibilities

rik ←
{

sik − s∗, if k 6∈ A∗i
sik −maxk ′ 6∈A∗i

(sik + aik) otherwise
3 for all k update availabilities

1 akk ←
∑

i 6=k [rik ]+ where [rik ]+ = rik if rik > 0 and 0 otherwise.

2 for all i , aik ← min{0, rkk +
∑

i ′ 6=i ,k [ri ′k ]+}
4 Assign an exemplar to i by k(i) ← argmax

k′
(rik′ + aik′)
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Cluster validation

External

when the true clustering ∆∗ is known

compares result(s) ∆ obtained by algorithm A with ∆∗

validates algorithms/methods

Internal - no external reference



External cluster validation

Scenarios

given data D, truth ∆∗; algorithm A produces ∆
is ∆ close to ∆∗?

given data D, truth ∆∗; algorithm A produces ∆, algorithm A’ produces ∆′

which of ∆,∆′ is closer to ∆∗?

multiple datasets, multiple algorithms
which algorithm is better?

A distance between clusterings d(∆,∆′) needed



Requirements for a distance

Depend on the application

Applies to any two partitions of the same data set

Makes no assumptions about how the clusterings are obtained

Values of the distance between two pairs of clusterings comparable under
the weakest possible assumptions

Metric (triangle inequality) desirable

understandable, interpretable



The confusion matrix

Let ∆ = {C1:K}, ∆′ = {C ′1:K ′}
Define nk = |Ck |, n′k′ = |C ′k′ |
mkk′ = |Ck ∩ C ′k′ |, k = 1 : K , k ′ = 1 : K ′

note:
∑

k mkk′ = n′k′ ,
∑

k′ mkk′ = nk ,
∑

k,k′ mkk′ = n

The confusion matrix M ∈ RK×K ′ is

M = [mkk′ ]
k′=1:K ′

k=1:K

all distances and comparison criteria are based on M

the normalized confusion matrix P = M/n

pkk′ =
mkk′

n

The normalized cluster sizes pk = nk/n, p′k′ = n′k′/n are the marginals of P

pk =
∑
k′

pkk′ pk′ =
∑

k

pkk′



The Misclassification Error (ME) distance

Define the Misclassification Error (ME) distance dME

dME = 1−max
π

K∑
k=1

pk,π(k) π ∈ {all K−permutations}, K ≤ K ′w.l.o.g

Interpretation: treat the clusterings as classifications, then minimize the
classification error over all possible label matchings

Or: ndME is the Hamming distance between the vectors of labels,
minimized over all possible label matchings

can be computed in polynomial time by Max bipartite matching
algorithm (also known as Hungarian algorithm)

Is a metric: symmetric, ≥ 0, triangle inequality

dME (∆1,∆2) + dME (∆1,∆3) ≥ dME (∆2,∆3)

easy to understand (very popular in computer science)

dME ≤ 1− 1/K

bad: if clusterings not similar, or K large, dME is coarse/indiscriminative

recommended: for small K



The Variation of Information (VI) distance

Clusterings as random variables

Imagine points in D are picked randomly, with equal probabilities

Then k(i), k ′(j) are random variables

with Pr [k] = pk , Pr [k , k ′] = pkk′



Incursion in information theory I

Entropy of a random variable/clustering H∆ = −
∑

k pk ln pk

0 ≤ H∆ ≤ ln K

Measures uncertainty in a distribution (amount of randomness)

Joint entropy of two clusterings

H∆,∆′ = −
∑
k,k′

pkk′ ln pkk′

H∆′,∆ ≤ H∆ + H∆′ with equality when the two random variables are
independent

Conditional entropy of ∆′ given ∆

H∆′|∆ = −
∑

k

pk

∑
k′

pkk′

pk
ln

pkk′

pk

Measures the expected uncertainty about k ′ when k is known

H∆′|∆ ≤ H∆′ with equality when the two random variables are independent



Incursion in information theory II

Mutual information between two clusterings (or random variables)

I∆,∆ = H∆ + H∆′ − H∆′,∆

= H∆′ − H∆′|∆

Measures the amount of information of one r.v. about the other

I∆,∆ ≥ 0, symmetric. Equality iff r.v.’s independent



The VI distance

Define the Variation of Information (VI) distance

dVI (∆,∆′) = H∆ + H∆′ − 2I∆′,∆

= H∆|∆′ + H∆′|∆

Interpretation: dVI is the sum of information gained and information lost
when labels are switched from k() to k ′()

dVI symmetric, ≥ 0

dVI obeys triangle inequality (is a metric)

Other properties

Upper bound
dVI ≤ 2 ln Kmax if K ,K ′ ≤ Kmax ≤

√
n

(asymptotically attained)

dVI ≤ ln n over all partitions (attained)

Unbounded! and grows fast for small K



Other criteria and desirable properties

Comparing clustering by indices of similarity i(∆,∆′)

from statistics (Rand, adjusted Rand, Jaccard, Fowlkes-Mallows
...)

range=[0,1], with i(∆,∆′) = 1 for ∆ = ∆′

the properties of these indices not so good

any index can be transformed into a “distance” by
d(∆,∆′) = 1− i(∆,∆′)

Other desirable properties of indices and distances between clusterings

n-invariance

locality

convex additivity



Define N11 = # pairs which are together in both clusterings, N12 = # pairs
together in ∆, separated in ∆′, N21 (conversely), N22 =#number pairs
separated in both clusterings

Rand index = N11+N22

#pairs

Jaccard index = N11

#pairs

Fowlkes-Mallows = Precision× Recall

all vary strongly with K . Thereforek, Adjusted indices used mostly

adj(i) =
i − ī

max(i)− ī



Internal cluster(ing) validation

Why?

Most algorithms output a clustering even if no clusters in data (parametric
algorithms)

How to decide whether to accept it or not?

related to selection of K

Some algorithms are run multiple times (e.g EM)

How to select the clustering(s) to keep?

Validate by the cost L
∆ is valid if L(∆) is ”small”

but how small is ”small”?

Note: rescaling data may change L(∆)



Heuristics

Gap heuristic

single linkage:

define lr length of r -th edge added to MST

l1 ≤ l2 ≤ . . . ln−K︸ ︷︷ ︸
intracluster

≤ ln−K+1 ≤ . . .︸ ︷︷ ︸
deleted

ln−K/ln−K+1 ≤ 1 should be small

min diameter:
L(∆)

maxi,j∈D ||xi − xj ||

L(∆)

mink,k′ distance(Ck ,Ck′)

etc



Quadratic cost

L(∆) = const − trace X T (∆)AX (∆)

with X = matrix reprentation for ∆

then, if cost value L(∆) small, we can prove that clustering ∆ is almost
optimal

This holds for K-means (weighted, kernelized) and several graph partioning
costs (normalized cut, average association, correlation clustering, etc)



Matrix Representations

matrix reprentations for ∆

unnormalized (redundant) representation

X̃ik =

{
1 i ∈ Ck

0 i 6∈ Ck
for i = 1 : n, k = 1 : K

normalized (redundant) representation

Xik =

{
1/
√
|Ck | i ∈ Ck

0 i 6∈ Ck
for i = 1 : n, k = 1 : K

therefore X T
k Xk ′ = δ(k , k ′), X orthogonal matrix

Xk = column k of X

normalized non-redundant reprentation
XK is determined by X1:K−1

hence we can use Y ∈ Rn×(K−1) orthogonal representation

intuition: Y represents a subspace (is an orthogonal basis)

K centers in Rd , d ≥ K determine a K − 1 dimesional subspace
plus a translation



Example: the K-means cost

remember

L(∆) =
1

2

K∑
k=1

∑
i ,j∈Ck

||xi − xj ||2 + constant

in matrix form

L(∆) = −1

2
X T AX + constant

where
Aij = xT

i xj

is the Gram matrix of the data

if data centered, ie
∑

i xi = 0 and Y rotated appropriately (see
Meila, 2006)[Meilă, 2006]

L(∆) = −1

2
Y T AY + constant

Assume k-means cost from now on



A spectral lower bound

minimizing L(∆) is equivalent to

max Y T AY

over all Y ∈ Rn×(K−1) that represent a clustering

a relaxation
max Y T AY

over all Y ∈ Rn×(K−1) orthogonal

solution to relaxed provlem is

Y ∗ = eigenvectors 1:K−1 of A

L∗ =
K−1∑
k=1

λk(A)

L∗ = constant − L∗ = trace A− L∗ is lower bound for L

L∗ ≤ L(∆) for all ∆



A theorem (Meila, 2006)

Theorem

define

δ =
Y T AY −

∑K−1
k=1 λk

λK−1 − λK
ε(δ) = 2δ[1− δ/(K − 1)]

define pmin, pmax = min,max |Ck |
n

then, whenever ε(δ) ≤ pmin, we have that

dME (∆,∆opt) ≤ ε(δ)pmax

where dME is misclassification error distance

Remarks

it is a worst-case result

makes no (implicit) distributional assumptions

when theorem applies, bound is good dME (∆,∆opt) ≤ pmin

applies only if a good clustering is found (not all data, clusterings)

intuiton: if data well clustered, K − 1 principal subspace is aligned with
cluster centers



data d = 35, σ = 0.4 n = 100

n = 200 n = 1000
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What I didn’t talk about

Hierarchical clustering

Subspace clustering (or clustering on subsets of attributes)

Bi-clustering (and multi-way-clustering)

Partial clustering

Ensembles of clusterings, consensus clustering, and clustering clusterings



Hierarchical clustering

Divisive (top down)

starts with all data in one cluster, divides recursively into 2 (or
more) clusters

Example: spectral clustering, min diameter

Agglomerative (bottom up)

starts n cluster containing 1 item, merges 2 clusters recursively

Example: Ward algorithm, single linkage

Hierarchical Dirichlet processes

Remarks

Any cost based clustering paradigm can produce a hierarchical
clustering

Any non-parametric level-sets paradigm can produce a
hierarchical clustering

Mixture models (finite or not) can also be defined hierarchically.
Issues of identifyability appear



The Ward agglomerative algoritm [Ward, 1963]

Cost = same as K-means

Algorithm idea:

Start with n single point clusters

Merge the two clusters that increase L the least, until K
clusters left

Greedy, recursive algorithm, O(n3) operations



Subspace clustering

Problem: each cluster is defined by a subset of relevant attributes

(features)

Examples: user modeling (clusters of users vs clusters of
products/services), gene expression data

Known as Clustering on Subsets of Attributes (COSA) Biclustering (and
Multiway Clustering), Subspace clustering

Amounts to clustering both the data exemplars and the data features

Approaches

COSA [Friedman and Meulman, 2004] cost based, + additional
entropy term. Alternate minimization algorithm.

[Hoff, 2005] Dirichlet process mixtures approach. Each f (.; θk)
samples a set of relevant features. Estimated by MCMC

Multivariate Information Bottleneck [Friedman et al., 2001]
Information theory based. Estimation by alternate
(KL-divergence) projections.

many others. . . see IEEE TKDE



Partial clustering

Problem: Given a node, find its cluster

Premise: the data set is extremely large, there are many small clusters,
possibly O(n)

Nibble algorithm of [Spielman and Teng, 2008]

Given: a graph, by its Markov transition matrix P

Start with node i , tolerance ε, number steps t

Initialize p ∈ Rn with pi = 1, pj = 0 for j 6= i

Iterate for t steps
1 p ← Pp

2 for j = 1 : n, if pj < ε set pj = 0

Output C (i) = { j | pj > 0 }
C (i) is the set of items attainable from i by a “likely” path

Original algorithm has sparsest cut guarantees
Used as subroutine by other algorithms.



Links

Yee Whye Teh’s tutorial on DP Mixtures
http://mlg.eng.cam.ac.uk/tutorials/07/ywt.pdf

Lecture on exponential family models http:
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