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1 Conditional probability, total probability,
Bayes’ rule

Definition of conditional distribution of A given B.

PAB(CL, b)

Paslaly) = =50

whenever Pg(b) # 0 (and P4 p(alb) undefined otherwise).

Total probability formula. When A, B are events, and B is the complement
of B

P(A) = P(A,B)+ P(A,B) = P(A|B)P(B) + P(A|B)P(B)

When A, B are random variables, the above gives the marginal distribution

of A.
Pa(a) = Z Pag(a,b) = Z Pap(alb) Pp(b)

beQ)(B) beQ(B)

Bayes’ rule
PyPpi4

Pp
The chain rule Any multivariate distribution over n variables X, X, ... X,
can be decomposed as:

Pap =

Px, x5,.x, = PxyPxy)x: Pxsxix Pxyxixoxs - - - Pxojxi.. X0



2 Probabilistic independence

A1l B <= Pyp = P4.Pp

We read A | B as “A independent of B”. An equivalent definition of
independence is:

AL B <= Payp = P,

The above notation are shorthand for

foralla € Q(A), b € Q(b), Pap(alb) = Pa(a) whenever Pg # 0
Pap(a,b)

Pp(b)
Pag(a,b) = Pa(a)Pp(b)

Py(a) whenever Pg # 0

Intuitively, probabilistic independence means that knowing B does not bring
any additional information about A (i.e. doesn’t change what we already be-
lieve about A). Indeed, the mutual information® of two independent variables
is zero.

Exercise 1 [The exercises in this section are optional and will not influence
your grade. Do them only if you have never done them before.]

Prove that the two definitions of independence are equivalent.

Exercise 2 A, B are two real variables. Assume that A, B are jointly
Gaussian. Give a necessary and sufficient condition for A | B in this case.
Conditional independence

A richer and more useful concepty is the conditional independence between
sets of random variables.

LAn information theoretical quantity that measures how much information random
variable A has about random variable B.



A L B|C A PAB|C = PA\C-PB|C <:>PA|BC = PA\C

Once C' is known, knowing B brings no additional information about A.
Here are a few more equivalent ways to express conditional independence.
The expressions below must hold for every a, b, ¢ for which the respective
conditional probabilities are defined.

Papc(a,blc) = Pyclalc)Ppc(blc)

PAgc(a, b, C) . PAc(a, C)ch(b, C)
Pe(e) - Pe(c)?
Pyjc(alc) Ppjc(blc)
PABc(a, b, C) = PC( )
PAgc(a, b, C) . PA|C( )
PBc<b, C) n Pc( )
Pypc(albc) = PAlC( alc)
Papo(a,b,c) = Po(c)Paclale) Ppic(ble)

Since independence between two variables implies the joint probability dis-
tribution factors, it implies far fewer parameters are necessary to represent
the joint distribution (r4 + rp rather than r4rg), and other important sim-
plifications such as A L B = F[AB] = E[A|E[B] [Exercise 3 Prove this
relationship. |

These definitions extend to sets of variables:
AB 1 CD = Papep = PapPep
and
AB L CD|EF = Pagcpler = PapprFPep|er-

Furthermore, independence of larger sets of variables implies independence
of subsets (for fixed conditions):



AB 1 CD|EF = A L CD|EF,A 1 C|EF,...

[Exercise 4 Prove this.|

Notice that A L B does not imply A L B|C, nor the other way around.
[Exercise 5 Find examples of each case.]

Two different factorizations of the joint probability p(a,b,c¢) when A L B|C
are a good basis for understanding the two primary types of graphical mod-
els we will study: wundirected graphs, also known as Markov random fields
(MRFs); and directed graphs, also known as Bayes’ nets (BNs) and belief
networks.

One factorization,

Pac(a, c)Ppe(b, c)

PABC(aa ba C) = PC(C)

= ¢ac(a,c)ppc(b,c)

is into a product of potential functions defined over subsets of variables with a
term in the denominator that compensates for “double-counting” of variables
in the intersection. From this factorization an undirected graphical represen-
tation of the factorization can be constructed by adding an edge between any
two variables that cooccur in a potential.

The other factorization,

PABC(a7 b, C) = PC<C)PA\C(G"C)PB|C<()|C>7

is into a product of conditional probability distributions that imposes a par-
tial order on the variables (e.g C' comes before A, B). From this factorization
a directed graphical model can be constructed by adding directed edges that
match the “causality” implied by the conditional distributions. In particular,
if the factorization involves Px|yz then directed edges are added from Y and
Z to X.



3 The (semi)-graphoid axioms

For any distribution Py over a set of variables V' the following properties of
independence hold. Let X,Y,Z, W be disjoint subsets of discrete variables
from V.

[S] X LY |Z = Y L X|Z (Symmetry)
D] X LYW |Z = X LY |Z (Decomposition)
WU] X LYW |Z = X LY |WZ (Weak union)
[Cl] X LY |[Zand X LW |YZ = X LYW |Z (Contraction)

[I] If P is strictly positive for all instantiations of the variables,
X 1LY |WZand X LWI|YZ = X LYW |Z (Intersection)

Properties S, D, WU, C are called the semi-graphoid axioms. The semi-
graphoid axioms together with property [I] are called the graphoid axioms.



