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1 Conditional probability, total probability,

Bayes’ rule

Definition of conditional distribution of A given B.

PA|B(a|b) =
PAB(a, b)

PB(b)

whenever PB(b) 6= 0 (and PA|B(a|b) undefined otherwise).

Total probability formula. When A, B are events, and B̄ is the complement
of B

P (A) = P (A, B) + P (A, B̄) = P (A|B)P (B) + P (A|B̄)P (B̄)

When A, B are random variables, the above gives the marginal distribution
of A.

PA(a) =
∑

b∈Ω(B)

PAB(a, b) =
∑

b∈Ω(B)

PA|B(a|b)PB(b)

Bayes’ rule

PA|B =
PAPB|A

PB

The chain rule Any multivariate distribution over n variables X1, X2, . . .Xn

can be decomposed as:

PX1,X2,...Xn
= PX1

PX2|X1
PX3|X1X2

PX4|X1X2X3
. . . PXn|X1...Xn−1
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2 Probabilistic independence

A ⊥ B ⇐⇒ PAB = PA.PB

We read A ⊥ B as “A independent of B”. An equivalent definition of
independence is:

A ⊥ B ⇐⇒ PA|B = PA

The above notation are shorthand for

for alla ∈ Ω(A), b ∈ Ω(b), PA|B(a|b) = PA(a) whenever PB 6= 0

PAB(a, b)

PB(b)
= PA(a) whenever PB 6= 0

PAB(a, b) = PA(a)PB(b)

Intuitively, probabilistic independence means that knowing B does not bring
any additional information about A (i.e. doesn’t change what we already be-
lieve about A). Indeed, the mutual information1 of two independent variables
is zero.

Exercise 1 [The exercises in this section are optional and will not influence
your grade. Do them only if you have never done them before.]

Prove that the two definitions of independence are equivalent.

Exercise 2 A, B are two real variables. Assume that A, B are jointly
Gaussian. Give a necessary and sufficient condition for A ⊥ B in this case.

Conditional independence

A richer and more useful concepty is the conditional independence between
sets of random variables.

1An information theoretical quantity that measures how much information random

variable A has about random variable B.
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A ⊥ B | C ⇐⇒ PAB|C = PA|C .PB|C ⇐⇒ PA|BC = PA|C

Once C is known, knowing B brings no additional information about A.
Here are a few more equivalent ways to express conditional independence.
The expressions below must hold for every a, b, c for which the respective
conditional probabilities are defined.

PABC(a, b|c) = PA|C(a|c)PB|C(b|c)

PABC(a, b, c)

PC(c)
=

PAC(a, c)PBC(b, c)

PC(c)2

PABC(a, b, c) =
PA|C(a|c)PB|C(b|c)

PC(c)

PABC(a, b, c)

PBC(b, c)
=

PA|C(a, c)

PC(c)

PA|BC(a|b, c) = PA|C(a|c)

PABC(a, b, c) = PC(c)PA|C(a|c)PB|C(b|c)

Since independence between two variables implies the joint probability dis-
tribution factors, it implies far fewer parameters are necessary to represent
the joint distribution (rA + rB rather than rArB), and other important sim-
plifications such as A ⊥ B ⇒ E[AB] = E[A]E[B] [Exercise 3 Prove this
relationship.]

These definitions extend to sets of variables:

AB ⊥ CD ≡ PABCD = PABPCD

and

AB ⊥ CD|EF ≡ PABCD|EF = PAB|EFPCD|EF .

Furthermore, independence of larger sets of variables implies independence
of subsets (for fixed conditions):
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AB ⊥ CD|EF ⇒ A ⊥ CD|EF, A ⊥ C|EF, . . .

.

[Exercise 4 Prove this.]

Notice that A ⊥ B does not imply A ⊥ B|C, nor the other way around.
[Exercise 5 Find examples of each case.]

Two different factorizations of the joint probability p(a, b, c) when A ⊥ B|C
are a good basis for understanding the two primary types of graphical mod-
els we will study: undirected graphs, also known as Markov random fields
(MRFs); and directed graphs, also known as Bayes’ nets (BNs) and belief
networks.

One factorization,

PABC(a, b, c) =
PAC(a, c)PBC(b, c)

PC(c)
= φAC(a, c)φBC(b, c)

is into a product of potential functions defined over subsets of variables with a
term in the denominator that compensates for “double-counting” of variables
in the intersection. From this factorization an undirected graphical represen-
tation of the factorization can be constructed by adding an edge between any
two variables that cooccur in a potential.

The other factorization,

PABC(a, b, c) = PC(c)PA|C(a|c)PB|C(b|c),

is into a product of conditional probability distributions that imposes a par-
tial order on the variables (e.g C comes before A, B). From this factorization
a directed graphical model can be constructed by adding directed edges that
match the “causality” implied by the conditional distributions. In particular,
if the factorization involves PX|Y Z then directed edges are added from Y and
Z to X.
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3 The (semi)-graphoid axioms

For any distribution PV over a set of variables V the following properties of
independence hold. Let X, Y, Z, W be disjoint subsets of discrete variables
from V .

[S] X ⊥ Y |Z ⇒ Y ⊥ X |Z (Symmetry)

[D] X ⊥ Y W |Z ⇒ X ⊥ Y |Z (Decomposition)

[WU] X ⊥ Y W |Z ⇒ X ⊥ Y |WZ (Weak union)

[C] X ⊥ Y |Z and X ⊥ W | Y Z ⇒ X ⊥ Y W |Z (Contraction)

[I] If P is strictly positive for all instantiations of the variables,
X ⊥ Y |WZ and X ⊥ W | Y Z ⇒ X ⊥ Y W |Z (Intersection)

Properties S, D, WU, C are called the semi-graphoid axioms. The semi-
graphoid axioms together with property [I] are called the graphoid axioms.
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