STAT 535 Lecture 2

 Independence and conditional independence

 Independence and conditional independence}
(C)Marina Meilă mmp@stat.washington.edu

1 Conditional probability, total probability, Bayes' rule

Definition of conditional distribution of A given B.

$$
P_{A \mid B}(a \mid b)=\frac{P_{A B}(a, b)}{P_{B}(b)}
$$

whenever $P_{B}(b) \neq 0$ (and $P_{A \mid B}(a \mid b)$ undefined otherwise).
Total probability formula. When A, B are events, and \bar{B} is the complement of B

$$
P(A)=P(A, B)+P(A, \bar{B})=P(A \mid B) P(B)+P(A \mid \bar{B}) P(\bar{B})
$$

When A, B are random variables, the above gives the marginal distribution of A.

$$
P_{A}(a)=\sum_{b \in \Omega(B)} P_{A B}(a, b)=\sum_{b \in \Omega(B)} P_{A \mid B}(a \mid b) P_{B}(b)
$$

Bayes' rule

$$
P_{A \mid B}=\frac{P_{A} P_{B \mid A}}{P_{B}}
$$

The chain rule Any multivariate distribution over n variables $X_{1}, X_{2}, \ldots X_{n}$ can be decomposed as:

$$
P_{X_{1}, X_{2}, \ldots X_{n}}=P_{X_{1}} P_{X_{2} \mid X_{1}} P_{X_{3} \mid X_{1} X_{2}} P_{X_{4} \mid X_{1} X_{2} X_{3}} \ldots P_{X_{n} \mid X_{1} \ldots X_{n-1}}
$$

2 Probabilistic independence

$$
A \perp B \quad \Longleftrightarrow \quad P_{A B}=P_{A} \cdot P_{B}
$$

We read $A \perp B$ as " A independent of B ". An equivalent definition of independence is:

$$
A \perp B \quad \Longleftrightarrow \quad P_{A \mid B}=P_{A}
$$

The above notation are shorthand for

$$
\text { for all } a \in \Omega(A), b \in \Omega(b), \begin{aligned}
P_{A \mid B}(a \mid b) & =P_{A}(a) \text { whenever } P_{B} \neq 0 \\
\frac{P_{A B}(a, b)}{P_{B}(b)} & =P_{A}(a) \text { whenever } P_{B} \neq 0 \\
P_{A B}(a, b) & =P_{A}(a) P_{B}(b)
\end{aligned}
$$

Intuitively, probabilistic independence means that knowing B does not bring any additional information about A (i.e. doesn't change what we already believe about A). Indeed, the mutual information ${ }^{1}$ of two independent variables is zero.

Exercise 1 [The exercises in this section are optional and will not influence your grade. Do them only if you have never done them before.]

Prove that the two definitions of independence are equivalent.
Exercise $2 A, B$ are two real variables. Assume that A, B are jointly Gaussian. Give a necessary and sufficient condition for $A \perp B$ in this case.

Conditional independence

A richer and more useful concepty is the conditional independence between sets of random variables.

[^0]$$
A \perp B \mid C \Longleftrightarrow P_{A B \mid C}=P_{A \mid C} \cdot P_{B \mid C} \Longleftrightarrow P_{A \mid B C}=P_{A \mid C}
$$

Once C is known, knowing B brings no additional information about A. Here are a few more equivalent ways to express conditional independence. The expressions below must hold for every a, b, c for which the respective conditional probabilities are defined.

$$
\begin{aligned}
P_{A B C}(a, b \mid c) & =P_{A \mid C}(a \mid c) P_{B \mid C}(b \mid c) \\
\frac{P_{A B C}(a, b, c)}{P_{C}(c)} & =\frac{P_{A C}(a, c) P_{B C}(b, c)}{P_{C}(c)^{2}} \\
P_{A B C}(a, b, c) & =\frac{P_{A \mid C}(a \mid c) P_{B \mid C}(b \mid c)}{P_{C}(c)} \\
\frac{P_{A B C}(a, b, c)}{P_{B C}(b, c)} & =\frac{P_{A \mid C}(a, c)}{P_{C}(c)} \\
P_{A \mid B C}(a \mid b, c) & =P_{A \mid C}(a \mid c) \\
P_{A B C}(a, b, c) & =P_{C}(c) P_{A \mid C}(a \mid c) P_{B \mid C}(b \mid c)
\end{aligned}
$$

Since independence between two variables implies the joint probability distribution factors, it implies far fewer parameters are necessary to represent the joint distribution $\left(r_{A}+r_{B}\right.$ rather than $\left.r_{A} r_{B}\right)$, and other important simplifications such as $A \perp B \Rightarrow E[A B]=E[A] E[B][$ Exercise 3 Prove this relationship.]

These definitions extend to sets of variables:

$$
A B \perp C D \equiv P_{A B C D}=P_{A B} P_{C D}
$$

and

$$
A B \perp C D \mid E F \equiv P_{A B C D \mid E F}=P_{A B \mid E F} P_{C D \mid E F}
$$

Furthermore, independence of larger sets of variables implies independence of subsets (for fixed conditions):

$$
A B \perp C D|E F \Rightarrow A \perp C D| E F, A \perp C \mid E F, \ldots
$$

[Exercise 4 Prove this.]
Notice that $A \perp B$ does not imply $A \perp B \mid C$, nor the other way around. [Exercise 5 Find examples of each case.]

Two different factorizations of the joint probability $p(a, b, c)$ when $A \perp B \mid C$ are a good basis for understanding the two primary types of graphical models we will study: undirected graphs, also known as Markov random fields (MRFs); and directed graphs, also known as Bayes' nets (BNs) and belief networks.

One factorization,

$$
P_{A B C}(a, b, c)=\frac{P_{A C}(a, c) P_{B C}(b, c)}{P_{C}(c)}=\phi_{A C}(a, c) \phi_{B C}(b, c)
$$

is into a product of potential functions defined over subsets of variables with a term in the denominator that compensates for "double-counting" of variables in the intersection. From this factorization an undirected graphical representation of the factorization can be constructed by adding an edge between any two variables that cooccur in a potential.

The other factorization,

$$
P_{A B C}(a, b, c)=P_{C}(c) P_{A \mid C}(a \mid c) P_{B \mid C}(b \mid c),
$$

is into a product of conditional probability distributions that imposes a partial order on the variables (e.g C comes before A, B). From this factorization a directed graphical model can be constructed by adding directed edges that match the "causality" implied by the conditional distributions. In particular, if the factorization involves $P_{X \mid Y Z}$ then directed edges are added from Y and Z to X.

3 The (semi)-graphoid axioms

For any distribution P_{V} over a set of variables V the following properties of independence hold. Let X, Y, Z, W be disjoint subsets of discrete variables from V.
[S] $X \perp Y|Z \Rightarrow Y \perp X| Z$ (Symmetry)
[D] $X \perp Y W|Z \Rightarrow X \perp Y| Z$ (Decomposition)
[WU] $X \perp Y W|Z \Rightarrow X \perp Y| W Z$ (Weak union)
[C] $X \perp Y \mid Z$ and $X \perp W|Y Z \Rightarrow X \perp Y W| Z$ (Contraction)
[I] If P is strictly positive for all instantiations of the variables, $X \perp Y \mid W Z$ and $X \perp W|Y Z \Rightarrow X \perp Y W| Z$ (Intersection)

Properties S, D, WU, C are called the semi-graphoid axioms. The semigraphoid axioms together with property $[\mathrm{I}]$ are called the graphoid axioms.

[^0]: ${ }^{1}$ An information theoretical quantity that measures how much information random variable A has about random variable B.

