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Reading KF 2.2 (graphs), 4.2, 4.3, (4.4. additional topics)

1 Representing independence in graphs

Graphical model = graphical representation of (conditional) independence re-
lationships in a joint distribution

= the distribution itself

graphical model - structure (a graph)
- parametrization (depends on the graph, parameters are “local”)

A graph is defined as G = (V, E) where

• V is the set of graph vertices (or nodes); each node represents a
variable

• E is the set of graph edges; edges encode the dependencies.

More precisely: a missing edge encodes an independence relationship.

Idea: Independence in the joint distribution ←→ Separation in graph

This mapping is not unique and not perfect. But even so, graphical
representations are useful. Allowing for efficient computations is the main
reason. Helping scientists understand a problem and communicate about it
is another reason.
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Examples: F,G ⊥ A,B,C,D | E
A ⊥ C | B,D
A ⊥ C | B,D,E, F

Figure 1: An undirected graph and some independencies encoded by it.

There are multiple “languages” for representing independence relations in
graphs. The most popular ones are Markov random fields and Bayesian
Networks. Later on we will also study factor graphs, decomposable
models and junction tree representations. These graphical representations
are tools for understanding and designing inference algorithms.

2 Markov Random Fields (Markov networks)

2.1 Encoding independencies in undirected graphs

An arbitrary undirected graph can be seen as encoding a set of indepen-
dencies. The following rules states when two sets of variables U1, U2 ⊆
V, U1 ∩ U2 = ∅ are separated in an undirected graph. We denote sepa-
ration by ⊥ and take it to mean “independence in the joint distribution over
V ”.

U1 ⊥ U2 | U3 ⇐⇒ all paths between sets U1 and U2 pass through set U3

We say that U3 blocks the paths between X and Y ; think of it as “blocking
the flow of information”.

n(A) = the neighbors of variable A

A consequence of this rule is the following Markov property for MRFs
also called the local Markov property:
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A ⊥ everything else | n(A)

A set of variables that separates node A from the rest of the graph is called
a Markov blanket for A. The set n(A) is thus a Markov blanket, and it
is the minimal Markov blanket of A. Adding a node to a Markov blanket
preserves the Markov blanket property.

2.2 I-maps and perfect maps

Let us consider an undirected graphG = (V, E) and a probability distribution
P over the set of variables V . If every separation relationship “U1 separated
from U2 by U3” inG corresponds to a conditional independence U1 ⊥ U2 | U3

under P , then we say that the G is an I-map (independence map) of P .

One can think of a graph G as a representant of the family of all probability
distributions on V for which G is an I-map. Some of these distributions may
have additional independencies, which do not appear in G. For example,
any G is an I-map for the distribution over V in which all the variables are
mutually independent.

If G is an I-map of and P has no independencies except for those represented
by G, the we say that G is a perfect map for P .

Any undirected graphG has a perfect map (Geiger and Pearl,88), but not any
P has a perfect map as an undirected graph. The distributions representable
by graphs are a subclass of all distributions. An example of limitation im-
posed by the graph representation is that, in any graph (see for instance the
graph in Figure 1) A ⊥ G |E and B ⊥ G |E is equivalent to {A,B} ⊥ G |E.
However, this is not always true in a distribution (example: the parity func-
tion).
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2.3 Factorization

Now we will characterize the set of distributions for which a graph G is an
I-map. For this, we need a new definition. A clique of a graph G is a set
of nodes C ⊆ V which are fully connected in G (i.e all possible edges
between nodes in C appear in E). A maximal clique is a clique which is not
contained in any other clique of the graph.

For example, in figure 1, all the nodes are cliques of size one (but not maxi-
mal), all the edges are cliques of size two, and the triangles CDE, EFG are
cliques of size three. The maximal cliques are AB, BC, AD, CDE, EFG.

Theorem 1 Let G be a graph and assume P can be factored in the following
way

P =
∏

Cmaximal clique

φC(xC) (1)

where φC is a non-negative function depending only on the variables in C.
Then, G is an I-map of P .

We will illustrate this theorem by an example shortly. The converse is a more
powerful result, and is known as the Hammersley-Clifford theorem.

Theorem 2 (Hammersley-Clifford) If P > 0 and G is an I-map of P ,
then P can be written as a product of functions defined over the cliques of G
as in (1)1.

Exercise The theorem doesn’t always hold if P (x) = 0 for some x. Can you
construct such a counterexample? (Hint: give P lots of zeros.)

If a distribution P can be written in the form (1) for some graph G we say
that P factors according to graph G.

1The original Hammersley-Clifford theorem is stronger; it only assumes that P obeys

the local Markov property according to G
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Example Factorization for the undirected G in figure 1

PABCDEFG = φAB(a, b)φAD(a, d)φBC(b, c)φCDE(c, d, e)φEFG(e, f, g)

The functions φ are called clique potentials. They are required to be non-
negative (positive if P > 0). Clique potentials are not uniquely defined. One
can obtain equivalent factorizations by dividing/multiplying with functions
of variables that are common between cliques. For instance, we can rewrite
the above joint distribution as

PABCDEFG =

= (2φAB(a, b))(φAD(a, d)/2)φBC(b, c)φCDE(c, d, e)φEFG(e, f, g)

= (h(a)φAB(a, b))(φAD(a, d)/h(a))φBC(b, c)φCDE(c, d, e)φEFG(e, f, g) for any h(a) > 0

= ΦAB(a, b)φAD(a, d)φBC(b, c)(φ
′
CDE(c, d, e)h(c, d))φEFG(e, f, g)

The last example shows why we only need to consider maximal cliques in
the factorization of P . Because of the non-unicity of the φ’s, the parameters
of the clique potentials are hard to interpret. The potentials do not, in
general, represent probability tables. However, there are some important
special cases when the φ’s have probabilistic interpretations – these will be
the decomposable models we will study later. The Hidden Markov model
you have already encountered is one of them.

2.4 The clique potentials are not marginals in Markov

Random Fields - an example

The following simple example shows that potential 6= marginal even if the
potential is normalized.

Let V = {A,B,C}, E = {AB,BC,CA} and

φAB = φBC = φAC =

[
1
3

1
6

1
6

1
3

]

Note that this is not exactly a Markov field, as the potentials are given on the
edges, not on the maximal clique ABC. However, we shall use this example
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for simplicity (otherwise we’d need 4 or more nodes to prove our point).
Namely, we will show that PAB 6∝ φAB.

PAB(0, 0) ∝ φAB(0, 0)
∑

C

φAC(0, c)φBC(0, c) =
1

3

1

3

1

3
+

1

3

1

6

1

6
=

5

33 · 4

PAB(0, 1) ∝ φAB(0, 1)
∑

C

φAC(0, c)φBC(1, c) =
1

6

1

6

1

3
+

1

6

1

3

1

6
=

2

33 · 4

By symmetry, PAB(1, 1) = PAB(0, 0) and PAB(0, 1) = PAB(1, 0). Hence

Z = 2(PAB(0, 0) + PAB(0, 1)) =
7

54

and
PAB(0, 0)

PAB(0, 1)
=

5

2
6=

φAB(0, 0)

φAB(0, 1)
=

2

1

2.5 Where do the φ potentials come from?

Sometimes, they come from physical models, where (− log φ) represents an
energy. This is the case of the Ising model in lecture 1. Note that the poten-
tial energy is defined up an additive constant; this fits with the φ potential
being defined up to multiplicative constants.

Other times, they are “made up” by e.g engineers who want to represent
a problem. For example the lattice models representing images, are MRF’s
where the graph and the potential functions are artificial (but useful) repre-
sentations for images.

Sometimes, the potentials are obtained by a combination of scientific grounds,
estimation from data, and convenience consideration. This is the case in the
modeling of spatial processes. In such processes, the graph can represent: a
grid of locations where weather measurements are taken (an irregular net-
work), the states of the US, with edges between neighboring states (for the
study of e.g ecological processes), a watershed (points and edges along rivers),
a transportation network or a social contacts network (in epidemiology), etc.
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In a factored representation the savings in terms of number of parameters
w.r.t the multidimensional table representation are significant. Assume that
all variables are binary, and all potentials are represented by (unnormalized)
tables. Then for the graph in figure 1 the total number of parameters is

3× 22 + 2× 23 = 28

The size of a probability table over 7 binary variables is 27− 1 = 127 thus in
this example we save 99 parameters (almost 80%).

2.6 The example continued: factorization (1) and the
independencies prescribed by G

We will consider the example in figure 1. Let’s prove that the factorization
(1) implies that

{A,B} ⊥ F |C,D in P

if P factors according to the graph.

We will use the following fact about distributions:

Lemma 3 X ⊥ Y |Z under P iff there exist functions h1(x, z), h2(y, z)
such that PXY Z(x, y, z) = h1(x, z)h2(y, z).

Exercise Prove the lemma.

To use Lemma 3 in our proof, we write PABCDF in product form.

PABCDF (a, b, c, d, f) = (2)

=
∑

e,g

PABCDEFG (3)

=
∑

e,g

φAB(a, b)φAC(a, c)φBD(b, d)φCDE(c, d, e)φEFG(e, f, g) (4)

= φAB(a, b)φAC(a, c)φBD(b, d)
∑

e

φCDE(c, d, e)
∑

g

φEFG(e, f, g)

︸ ︷︷ ︸

ψEF (e,f)

(5)
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= φAB(a, b)φAC(a, c)φBD(b, d)
∑

e

φCDE(c, d, e)ψEF (e, f)

︸ ︷︷ ︸

ψCDF (c,d,f)

(6)

= [φAB(a, b)φAC(a, c)φBD(b, d)]
︸ ︷︷ ︸

h1(a,b,c,d)

ψCDF (c, d, f)
︸ ︷︷ ︸

h2(c,d,f)

(7)

From the last form of the marginal PABCDF we can conclude that the rela-
tionship {A,B} ⊥ F |C,D is true under P .

From the factorization, we can also see that {A,B} 6⊥ F |D in general. For
this, we start from the expression of the joint PABCDF and marginalize over
C to obtain PABDF .

PABDF (a, b, d, f) = (8)

=
∑

c

PABCDF (9)

=
∑

c

φAB(a, b)φAC(a, c)φBD(b, d)ψCDF (c, d, f) (10)

= φAB(a, b)φBD(b, d)
∑

c

[φAC(a, c)ψCDF (c, d, f)]

︸ ︷︷ ︸

ψADF (a,d,f)

(11)

= φAB(a, b)φBD(b, d)ψADF (a, d, f) (12)

This expression contains the factor ψADF that depends on both A, and F .
Thus, variable sets A,B and F cannot in general be separated if we conditon
on D only. Hence, this independence relationships does not hold in all distri-
butions that factor according to the graph in figure 1. (However, there may
be clique potentials for which the function ψADF can be decomposed into a
product for which A, F are separated. This set of distributions is a measure
zero set in the set of all MRF’s that factor according to this graph.)

2.7 Gaussian Markov fields

A multivariate normal distribution over has the form

PV (xV ) ∝ e−
1

2
(xV −µV )TΣ−1(xV −µV ) (13)
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If we denote the inverse covariance by D = Σ−1 and if, for simplicity, we
assume µV ≡ 0, then the multivariate normal over V can be written as

PV (xV ) ∝ e−
1

2
xT
V
DxV (14)

= e
− 1

2

∑

i∈V
Diix

2
i
−
∑

i<j
Dijxixj (15)

=
∏

i∈V

e−
1

2
Diix

2
i

︸ ︷︷ ︸

ψi

∏

i<j

e−Dijxixj
︸ ︷︷ ︸

φij

(16)

This is equivalent with a MRF that has an edge for every non-zero Dij . Con-
versely, in multivariate Gaussian, the zeros in the inverse covariance matrix
encode the conditional independencies.

2.8 Markov chains

X1 X2 X3 X4 X5

The joint distribution

PX1X2X3X4X5
= (PX1

PX2|X1
)PX3|X2

PX4|X3
PX5|X4

is a product of conditional distributions involving Xt+1, Xt. Xt+1, Xt are
neighbors in the chain. In this case the clique potentials, one for each edge,
are φ1,2 = PX1

PX2|X1
, φi,i+1 = PXi+1|Xi

, for i > 1, and have a probabilistic
interpretation.

The same can be said about the Hidden Markov Model.

2.9 Trees

X1 X2

X3

X4

X5

X6
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Tree = connected graph with no cycles (we also call it spanning tree). If
disconnected and no cycles, we call it a forest. Sometimes we use the term
tree to mean either a spanning tree or a forest.

Property: between every two variables in a spanning tree there is exactly one
path (at most one path for forests).

All cliques in a spanning tree have size 2.
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