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1 A limitation of Markov networks

Between two variables or subsets of V , there can be four combinations of
independence statements.

Conditional Marginal Independence
Independence A ⊥ B A 6⊥ B

A ⊥ B|C A B C A C B

A 6⊥ B|C
Not representable
by MRF A B C

The table above gives an example of MRF structure for each of the three
cases that are representable by MRF’s. For the fourth case, an I-map is
possible, and this is the graph that contains an edge A − B. Note that this
I-map is trivial, since it does not represent the independence A ⊥ B.

This is a limitation of MRF’s. We will show how serious this limitation is by
an example.

Suppose that a variable called “burglar alarm (A)” becoming true can have
two causes: a burglary (B) or an earthquake (E). A reasonable assumption
is that burglaries and earthquakes occur independently (B ⊥ E). But, given
that the alarm sounds A = 1, and hearing that an earthquake as taken place
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(E = 1), most people will believe that the burglary is less likely to have
taken place than if there had been no earthquake (E = 0), hence E carries
information about B when A = 1 and therefore B, E are dependent given A.
In other words, it is reasonable to assume that

B ⊥ E (1)

B 6⊥ E|A. (2)

Markov nets cannot represent this situation.

Exercise Find other examples of the kind (i) X ⊥ Y and X 6⊥ Y |Z, i.e
two independent causes which can produce the same effect. Find examples
that fit the other three possible combinations of marginal and conditional
(in)depependence, ie. (ii) X ⊥ Y, X ⊥ Y |Z, (iii) X 6⊥ Y, X ⊥ Y |Z, (iv)
X 6⊥ Y, X 6⊥ Y |Z. Can you describe them in words?

The case illustrated above is important enough to warrant the introduc-
tion of another formalism for encoding independencies in graphs, called D-
separation and based on directed graphs.

2 Directed Acyclic Graphs (DAG’s)

A Directed Acyclic Graph (DAGs) is a directed graph G = (V, ~E) which
contains no directed cycles.

this is a DAG this is not a DAG

Below is a somewhat more complicated textbook example (the “chest-clinic”
example). In this example, the arrows coincide with “causal links” between
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X-ray Dyspnoea

Tuberculosis Lung cancer Bronchitis

Asia Smoker

Figure 1: The “Chest clinic” DAG.

variables (i.e “Smoking causes Lung cancer”). This is not completely acci-
dental. Bayesian networks are particularly fit for representind domains where
there are causal relationships. It is therefore useful to think of causal rela-
tionships when we try to build a Bayes net that represents a problem. But
the formalism we study here is not necessarily tied to causality. One does
not have to interpret the arrows as cause-effect relations and we will not do
so. Terminology:
parent Asia is parent of Tuberculosis
pa(variable) the set of parents of a variable

pa( X-ray ) = { Lung cancer, Tuberculosis }
child Lung cancer is child of Smoker
ancestor Smoker is ancestor of Dyspnoea
descendent Dyspnoea is descendent of Smoker
family a node and its parents

{Dyspnoea, Tuberculosis, Lung cancer, Bronchitis} are a family

But perhaps the most important concept in DAG’s is the V-structure,
which denotes a variable having two parents which are not connected by an
edge. The Burglar-Earthquake-Alarm example of the previous section is the
V-structure.
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Burglar (B) Earthquake (E)

Alarm (A)

Landslide (L) Earthquake (E)

Alarm (A)

a V-structure not a V-structure

In figure 1, (T, X, L), (T, D, L), (T, D, B) are V-structures.

3 D-separation

In a DAG, independence is encoded by by the relation of d-separation, define
below.

A ⊥ B | C ⇐⇒ A d-separated from B by C

D-separation : A is d-separated from B by C if all the paths between
sets A and B are blocked by elements of C. The three cases of d-separation:

X Z Y

if Z ∈ C the path is blocked, otherwise open

X

Z

Y

if Z ∈ C the path is blocked, otherwise open

X

Z

Z’

Y

if Z or one of its descendents ∈ C the path is open, otherwise blocked

The directed Markov property: X ⊥ its non-descendants | pa(X)
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Theorem For any DAG G = (V, ~E) and any probability distribution PV over
V , if PV satisfies the Directed Markov Property w.r.t the DAG G, then any D-
separation relationship that is true in G corresponds to a true independence
relationship in PV .

(In other words, G is an I-map of PV ).

3.1 The Markov blanket

In a DAG, the Markov blanket of a node X is the union of all parents,
children and other parents of X’s children.

Markov blanket(X) = pa(X) ∪ ch(X) ∪
(

∪Y ∈ch(X)pa(Y ) \ {X}
)

For example, in the DAG in Figure 1, the Markov blanket of L is the set {S
(parent), X, D (children), T, B (parents of the children)}, and the Markov
blanket of A is T .

3.2 Equivalent DAG’s

Two DAG’s are said to be (likelihood) equivalent if they encode the same
set of independencies. For example, the two graphs below are equivalent
(encoding no independencies).

A B A B

If the arrows represented causal links, then the two above graphs would not
be equivalent!

Another example of equivalence between DAGs was seen in lecture 3: a
Markov chain or a HMM can be represented by a directed graph with “for-
ward” arrows, as well as by one with “backward” arrows. (Note, in passing,
that an HMM can also be represented as an undirected graph, demonstrating
equivalence between a DAG and a MRF).

Yet another example is below. On the left, the ”chest clinic” DAG. In the
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middle, an equivalent DAG. On the right, another DAG which is not equiva-
lent with the chest clinic example. [Exercise: verify that the graphs are/are
not equivalent by looking at what independence relationships hold in the
three graphs.]

X D

T L B

A S

X D

T L B

A S

X D

T L B

A S

G1 G2 G3

G1 ∼ G2 6∼ G3

Theorem 1 (Chickering) Two DAG’s are equivalent iff they have the same

undirected skeleton and the same V-structures.

Consequently, we can invert an arrow in a DAG and preserve the same inde-
pendencies, only if that arrow is not part of a V-structure. In other words,
A −→ B can be reversed iff for any arc ~CA pointing at A, there is an arc
~CB pointing into B and viceversa. Or, pa(B) = {A} ∪ pa(A).

It can be proved that one can traverse the class of all equivalent DAG’s by
successive arrow reversals.

3.3 D-separation as separation in an undirected graph

Here we show that D-separation in a DAG is equivalent to separation in an
undirected graph obtained from the DAG and the variables we are interested
in. First two definitions, whose meaning will become clear shortly.

Moralization is the graph operation of connecting the parents of a V-
structure. A DAG is moralized if all nodes that share a child have been
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connected. After a graph is moralized, all edges, be they original edges or
new edges added by moralization, are considered as undirected. If G is a
DAG the graph obtained by moralizing G is denoted by Gm and is called the
moral graph of G.

X D

T L B

A S

X D

T L B

A S

marrying the parents dropping the directions

For any variable X the set an(X) denotes the ancestors of X (including X

itself). Similarly, if A is a set of nodes, an(A) denotes the set of all ancestors
of variables in A.

an(A) =
⋃

X∈A

an(X)

The ancestral graph of a set of nodes A ⊆ V is the graph Gan(A) =
(an(A), EA) obtained from G by removing all nodes not in an(A).

Now we can state the main result.

Theorem 2 Let A, B, S ⊆ V be three disjoint sets of nodes in a DAG G.

Then A, B are D-separated by S in G iff they are separated by S in the moral

ancestral graph of A, B, S.

A ⊥ B |S in G iff A ⊥ B |S in (Gan(A∪B∪S))
m

The intuition is that observing/conditioning on a variable creates a depen-
dence between its parents (if it has any). Moralization represents this link.
Now why the ancestral graph? Note that an unobserved descendent cannot
produce dependencies between its ancestors (ie cannot open a path in a di-
rected graph). So we can safely remove all descendents of A, B that are not
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in S. The descendents of S itself that are not in A, B, and all the nodes that
are not ancestors of A, B, S can be removed by a similar reasoning. Hence,
first the graph is pruned, then dependencies between parents are added by
moralization. Now directions on edges can be removed, because DAG’s are
just like undirected graphs if it weren’t for the V-structures, and we have
already dealt with those.

The Theorem immediately suggests an algorithm for testing D-separation
using undirected graph separation.

1. remove all nodes not in an(A ∪ B ∪ S) to get Gan(A∪B∪S)

2. moralize the remaining graph to get (Gan(A∪B∪S))
m

3. remove all nodes in S from (Gan(A∪B∪S))
m to get G′

4. test if there is a path between A and B in G′

For example, test if S ⊥ B |D in the chest clinic DAG.
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X

T L

A S

B

D

L

A

T B

S

D

show nodes of interest ancestral graph

L

A

T B

S

D

L

A

T B

S

moralize eliminate conditioning
nodes

4 Factorization

Now we construct joint probability distributions that have the indepen-
dencies specified by a given DAG. Assume the set of discrete variables is
V = {X1, X2, . . . Xn} and that we are given a DAG G = (V, ~E). The goal
is to construct the family of distributions that are represented by the graph.
This family is given by

P (X1, X2, . . . Xn) =
n

∏

i=1

P (Xi|pa(Xi)) (3)

In the above P (Xi|pa(Xi)) represents the conditional distribution of variable
Xi given its parents. Because the factors P (Xi|pa(Xi)) involve a variable
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X D

T L B

A S

Figure 2: The “chest clinic” DAG, with shorter variable names.

and its parents, that is, nodes closely connected in the graph structure, we
often call them local probability tables (or local distributions).

Note that the parameters of each local table are (functionally) independent
of the parameters in the other tables. We can choose them separately, and
the set of all parameters for all conditional probability distributions form the
family of distributions for which the DAG G is an I-map.

If a distribution can be written in the form (3) we say that the distribution
factors according to the graph G. A joint distributions that factors
according to some DAG G is called a Bayes net.

Note that any distribution is a Bayes net in a trivial way: by taking G to
be the complete graph, with no missing edges. In general, we want a Bayes
net to be as sparse as possible, because representing independences explicitly
has many computational advantages.

The Bayes net described by this graph is

P (A, S, T, L, B, X, D) = P (A)P (S)P (T |A)P (L|S)P (B)P (X|T, L)P (D|T, L, B)

A way of obtaining this decomposition starting from the graph is

1. Construct a topological ordering of the variables. A topological or-
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dering is an ordering of the variables where the parents of each variable
are always before the variable itself in the ordering.
A, S, T, L, B, X, D is a topological ordering for the graph above. This
ordering is not unique; another possible topological ordering is A, B, T, S, L, D, X.
In general, there can be exponentially many topological orderings for
a given DAG.

2. Apply the chain rule following the topological ordering.

P (A, S, T, L, B, X, D) = P (A)P (S|A)P (T |A, S)P (L|A, S, T )P (B|A, S, T, L)

P (X|A, S, T, L, B)P (D|A, S, T, L, B, X ′S)

3. Use the directed Markov property to simplify the factors

P (S|A) = P (S)

P (T |A, S) = P (T |A)

P (L|A, S, T ) = P (L|S)

P (B|A, S, T, L) = P (B), etc.

Let us now look at the number of parameters in such a model. Assume
that in the example above all variables are binary. Then the number of
unconstrained parameters in the model is

1 + 1 + 2 + 2 + 1 + 4 + 8 = 19

The number of parameters in a 7 way contingency table is 27−1 = 127 so we
are saving 118 parameters. As we shall see, there are also other computational
advantages to joint distribution representations of this form.

11


