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1 The decomposable models class

The figure below illustrates the relationship between Bayes nets, Markov
nets and decomposable models.

A decomposable model can be defined in several equivalent ways:

• a Markov field whose underlying graph is chordal

• a Bayes net with no V-structures

• a Bayes net which has a Markov field perfect map

• a graphical model whose underlying (hyper)graph is a junction tree1

The junction tree supports general and optimally efficient algorithms for
inference, and therein lies the importance of decomposable models. These
algorithms folow from some very interesting and elegant mathematical prop-
erties of junction tree graphs, of which we will examine a few (there are
simple instances of more powerful properties of these graphs).

In what follows, we will study the properties of decomposable models that
make them so special, and will encounter an alternative representation for
them, called the junction tree. Before that, we discuss triangulation algo-
rithms.

1Note that we will use the term junction tree to denote either: (i) the junction tree
structure, or (ii) the structure + parametrization, i.e the decomposable graphical model,
or (i) the data structure that implements this graphical model. Usually the meaning will
be clear from the context.
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2 Triangulation algorithms

We say that an undirected graph is triangulated (or chordal) if every
cycle of length greater than 3 has a chord.
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The following algorithm, called the Tarjan Elimination algorithm, can

• verify that a graph is chordal
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• turn a non-chordal graph into a chordal graph by adding chords, that
is adding edges to the original graph. This process is called triangu-
lation.

Tarjan Elimination Algorithm
Input Undirected graph G = (V, E)
1. Pick any undeleted node X ∈ V

2. Connect all neighbors of X
3. Mark X as deleted (also mark as deleted all edges incident to X)
Repeat from 1. until no nodes are left
Output The graph and the added edges

Verifying that a graph is chordal. If a graph is already triangulated,
then it has at least 2 nodes whose neighbors form a clique. Such a node
is called simplicial. When a simplicial node is eliminated, the Tarjan

Elimination algorithm adds no new edges to the graph. It can also be
shown (Exercise for you) that if a simplicial node is removed from a chordal
graph, the remaining graph is chordal as well.

Hence, we can verify that G is chordal, by chosing to eliminate a simplicial
node at every step of the Tarjan Elimination algoritm. If at any step
we cannot find a simplicial node to eliminate, it means that the graph is
not chordal. On the other hand, if the algorithm eliminates all the nodes
(without adding any edges), this proves that G is chordal.

Note that the Tarjan Elimination will add new edges to a chordal graph
if we eliminate nodes that are not simplicial. Hence, it is essential to choose
simplicial node at every step of the algorithm.

Now we turn to the problem of triangulating a non-chordal graph.

2.1 Criteria for a good triangulation

The Tarjan Elimination algorithm guarantees to create a chordal graph. But
the resulting graph depends on the chosen elimination ordering. Since
computation in the resulting chordal graph (or graphical model) depends on
the size of the resulting cliques, we would like to produce either (a) a chordal
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graph with a max clique size as small as possible, or (b) a decomposable
model which requires as little memory as possible. The second requirement,
as we shall see, amounts to minimizing the sum of the state-spaces of all
cliques.

These criteria are not equivalent. If all variables have the same arity (=num-
ber of values), then (a) and (b) are of the same order, i.e exponential in the
max clique size. But if some variables take a very large number of values,
then the variables’ arities matter and one should try to optimize (b). This
is the case with speech and language models, where variables can represent
phonemes (∼ 102 values) or words (∼ 103 values).

A graph cliques ABC,BCD cliques ABD,ACD

A,D ∈ {0, 1, . . . , 999} State space State space
B,C ∈ {0, 1} 1000 × 2× 2× 2 1000 × 1000 × 2× 2
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D
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B C

D

A
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2.2 Finding a good elimination ordering

Finding the optimal elimination ordering with respect to either criterion is
NP-hard. The proof is by reduction to MAX CLIQUE, which is known not
only to be NP-hard, but also hard to approximate within a 1 + ǫ factor.

Hence, the only working triangulation algorithms which attempt to minimize
the size of the resulting state space are heuristics. The ones I will present
here are greedy, but they can be combined with any amount of search.

1. First, one should look for a simplicial node at every step of the trian-
gulation. This also guarantees that the Tarjan algorithm will not add
edges to aa graph that is already chordal.

2. Second, if no simplicial node is found, how to choose the next non-
simplicial node to eliminate? Below are two heuristics that have
worked better than others in experiments.
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Figure 2:

• Choose the node that creates a clique with the minimum state
space.

• Choose the node X that minimizes
∑

A,B rArB where the sum
is taken over all pairs of neighbors A,B ∈ n(X) which are not
already connected by an edge; rA, rB are the numbers of values
A,B can take. This heuristic is called the minimum weight
heuristic.

3 The junction tree - structure

In a triangulated graph, the maximal cliques and their intersections, called
separators, play an important role. A triangulated graph can be repre-
sented as a tree of maximal cliques. Figure 2 shows an example.

To obtain the junction tree of a decomposable graph, one proceeds as follows.

Input a chordal graph G = (V, E)

1. Run the Tarjan elimination algorithm to obtain a list of maximal
cliques C of the chordal graph. Note that the list will contain no
more than n− 1 cliques, where n = |V |.

2. For every C,C ′ ∈ C calculate their intersection SCC′ = C ∩C ′.

3. Construct the intersection graph I of C. The nodes of this graphs
are the cliques in C; there is an edge between C and C ′ in I iff SCC′

is not empty. The edges of the graph are labeled with the sets SCC′
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(and we will say that the edges are the intersections). Each edge
has a weight wCC′ = |SCC′ | given by the number of variables in this
intersection.

4. Construct a Maximum Spanning Tree of this intersection graph.
This is the Junction Tree. It will be a graph with node set C and
edge set S, which is a subset of the edges of the intersection graph
I. The edges of the junction tree are sets of variables; they are called
separators. There are exactly |C| − 1 separators in a junction tree.

Output The (maximal) cliques C, the separators S, the tree.

A maximum spanning tree is a tree over V whose sum of edge weights has
a maximum value. Here the edge weights are the sizes of the separators.

Remarks:

1. The junction tree structure is not unique. Figures 2 and 5 show two
examples of junction tree construction.

2. In a junction tree, there can be several edges that have the same set of
variables as labels; i.e SC1C2

= SC′

1
C′

2
. Therefore, the set of separators

S is a multiset, where each separator has a multiplicity. Figure 3
exemplifies this case.

3. The multiset of separators S is the same for all junction trees of
the same chordal graph; see Figure 3. Note also from the figure that
separators can be subsets of other separators.

Junction trees are defined only for chordal graphs. For any junction tree,
the running intersection property holds.

Running intersection property: Let G = (V, E) a chordal graph, and
J a junction tree for it. For any variable X in V , the set of cliques and
separators that contain X is a connected subgraph of J .
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Figure 3: Separators can have multiplicities: (a) a chordal graph, (b) its
maximal cliques list C, (c) the corresponding intersection graph, (d) a junc-
tion tree, (e) the multiset of separators S, (f) another junction tree, which
has the same separators S, (g), (h) rooted versions of the junction trees in
(d,f)
.
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Figure 4: Illustration of the running intersection property for the junction
tree in figure 5.

4 The junction tree - parameterization

A joint probability distribution that factors according to a junction tree has
the form:

P (X1, X2, . . . Xn) =

∏
C P (XC)∏
S P (XS)

(1)

where C,S are respectively indices over the cliques and separators of the
graph G.

For the junction trees in figures 2 and 5, the factorizations are

P (A,B,C,D,E) =
P (A,B,C)P (B,C,D)P (B,E)

P (B,C)P (B)
(2)

P (A,B,C,D,E, F,G,H, I) =
P (A,B,C)P (B,C,D)P (C,D,E)P (D,E,F,G)P (E,H)P (F, I)

P (B,C)P (C,D)P (D,E)P (E)P (F )
(3)

Any junction tree factorization can be easily seen as a Markov net factor-
ization. Obviously, any decomposable model is a Markov net. Therefore,
we often refer to PC , PS as clique/separator potentials. However, in
decomposable models the potentials are in a form that exhibits the local
probability tables. In this context, local means within a clique or a sepa-
rator. In contrast with Bayes nets, the local probability distributions that
build a decomposable model are marginal probabilities.

However, the parametrization (1), can be turned into a parametrization rem-
iniscent of Bayesian networks, called the conditional probability parametriza-
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Figure 5: From a Bayes net to a junction tree.
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tion of the junction tree.

For this, the junction tree is turned into a rooted tree, i.e a directed
treee where every node has a single parent. This can be achieved by the
following simple method: choose an arbitrary root node; then direct all
edges outward from the root node, proceeding recursively from the root
towards its descendants. When this process is accomplished, every clique C

in the junction tree other than the root will have a unique parent C ′ = pa(C).
For the root we set pa(root) = ∅. Then, the distribution (1) equals

PV (X1, X2, . . . Xn) =
∏

C

P (XC\pa(C)|pa(C)) (4)

For the junction tree in figure 2, choosing the root at clique ABC, the
conditional probability factorizations is

P (A,B,C,D,E) = P (A,B,C)P (D|B,C)P (E|B). (5)

For the junction tree in figure 5, choosing the root at clique DEFG, the
conditional probability factorizations is

P (A,B,C,D,E, F,G,H, I) = P (D,E,F,G)P (C|D,E)P (B|C,D)P (A|B,C)P (H|E)P (I|F ).
(6)

10



A Bayes net The Moral graph (not chordal)

A B

C D I

E F

H G

A B

C D I

E F

H G

The elimination and triangulation The junction tree

Eliminate Clique New edge

A ABC

B BCD CD

C CDE

H EH

I FI

D DEFG

E EFG non-maximal
F FG non-maximal
G G non-maximal

ABC

BCD

EH CDE

DEFG FI

BC

CD
E

DE
F

OR Eliminate Clique New edge

A ABC

C BCE BE

B BDE

H EH

I FI

D DEFG

E EFG non-maximal
F FG non-maximal
G G non-maximal

ABC

BCE

EH BDE

DEFG FI

BC

BE
E

DE
F

Figure 6: From a Bayes net to a junction tree, with triangulation. Note
that two triangulations are possible, which end in different junction trees of
similar “size”.
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