STAT 535 Lecture 5.1
 Junction Tree - additional proofs
 (c)Marina Meilă
 mmp@stat.washington.edu

Theorem 1 Every chordal graph has a junction tree.

Proof The proof is by induction on the number of variables $n=|V|$.
The statement is trivially true for $n=1$. We assume that the statement is true for all graphs with n nodes. Let X be the $n+1$-th node of a given graph \mathcal{G}. Then $\mathcal{G} \backslash\{X\}$ has a junction tree \mathcal{J}. Denote by $C=\{X\} \cup n(X)$ the clique formed by X and its neighbors.

If $n(X)$ is a node in \mathcal{J}, then we replace $n(X)$ with C in \mathcal{J}. It is easy to verify that the newly obtained j.t. has the Running Intersection Property. Thus, we have constructed a j.t on $n+1$ nodes for \mathcal{G}.

If $n(X)$ is not a node in \mathcal{J}, then it must be contained in a node (maximal clique) C^{\prime} of \mathcal{J}. We create the j.t. for \mathcal{G} by adding to \mathcal{J} the clique C, which we connect to C^{\prime} by separator $n(X)$. Again, it is easy to see that the newly obtained j.t. has the Running Intersection Property.

QED
A tree formed from the maximal cliques of a graph, with edges labeled by the intersections of the adjacent node cliques is called a clique tree.

Theorem $2 A$ clique tree has the Running Intersection Property \Leftrightarrow The clique tree is a Maximum Spanning Tree of the intersection graph, with weights equal to the sizes of the separators.

Proof(after Jordan) Let \mathcal{J} be the clique tree, let m be the number of nodes in \mathcal{J}, n be the number of variables, and let $w(\mathcal{J})$ be its weight. Then,

$$
\begin{equation*}
w(\mathcal{J})=\sum_{j=1}^{m-1}\left|S_{j}\right| \quad \text { with } \mathrm{S}_{\mathrm{j}} \text { the separators } \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& =\sum_{j=1}^{m-1} \sum_{X \in V} \mathbf{1}_{X \in S_{j}} \tag{2}\\
& =\sum_{X \in V} \sum_{j=1}^{m-1} \mathbf{1}_{X \in S_{j}} \tag{3}\\
& \leq \sum_{X \in V}\left(\sum_{i=1}^{m} \mathbf{1}_{X \in C_{i}}-1\right) \tag{4}\\
& =\sum_{i=1}^{m} \sum_{X \in V} \mathbf{1}_{X \in C_{i}}-n \tag{5}\\
& =\sum_{i=1}^{m}\left|C_{i}\right|-n \tag{6}
\end{align*}
$$

The last quantity does not depend on the tree structure, and is an upper bound for the weight of any clique tree. Assume that \mathcal{J} attains the upper bound. Then, obviously it is a Maximum Weight spanning tree. Now examine the inequality: the upper bound is attained if and only if for every X in V, the subgraph of \mathcal{J} that contains it is a spanning tree (i.e the number of separators that contain X equals the number of maximal cliques that contain X minus one).

QED

