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Variable elimination is probably the single most important algorithm to understand for
manipulating graphical models, because

• it solves the most important problem, “inference”, computing the conditional distri-
bution over one set of variables given assignments to another;

• it works for any directed or undirected graphical model over discrete variables;

• it’s easy to understand and re-derive;

• with the right elimination order, it’s as efficient as any other method that works for
arbitrary probability tables (that is, that relies only on conditional independencies
and not the numeric values of the probability distribution).

1 Moralization

VE can be done on either directed or undirected graphs but it’s convenient to consider only
the undirected (Markov random field) case, and for problems on directed graphs (Bayes’
nets), convert the BN net to an MRF prior to elimination. The conversion process is called
moralization, since it involves the “marriage” of a child’s parents.

For a directed graphical model, let G be the conditional indpendence graph and P the
probability distribution. Let Gm and P ′ be the graph and distribution after moralization.
Moralization exactly maintains the probability distribution: P ′ = P , and Gm remains an
I-map of P . But some of the conditional independencies encoded in G may be missing from
Gm. These ae the independencies corresponding to the moralization edges; as you recall,
adding an edge will destroy at least one independence in a graph. Thus, the moral graph
is a less accurate description of the independencies in P than the original graph.
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Given the directed graph G, we know that P factors

P (x) =
∏

Xi∈V

PXi
(xi|pa(xi)).

And we know that P ′ must factor

P ′(x) =
∏

i

φi(x)

The correspondence P ′(x) = P (x) is achieved by creating a potential for every family in G:

φXi
(x) = PXi

(xi|pa(xi)).

By the Hammersley-Clifford theorem, Gm is an I-map of P if the domain of every potential
function is a (not necessarily maximal) clique in Gm, or equivalently, if every family in G is
a clique in Gm. Thus, two equivalent methods of constructing the edges for Gm = (V, Em):

• Em is the union of cliques over all families of G;

• Em is E after adding edges between the parents of each variable (marrying the parents
to create cliques).

Gm may contain cliques that do not correspond to families of G; there are no corresponding
potentials in the factorization of P ′.

Here’s an example of moralization:

A

B C D

E F G

A

B C D

E F G

P = PBPCPEPFPG

PD|EFGPA|BCD

P = φBφCφEφFφG

φDEFGφABCD
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Notice that Gm has lost numerous conditional independencies: E ⊥ F, F ⊥ G,A ⊥ C, etc.

2 Elimination Algorithm

Variable elimination works by eliminating variables from an undirected graphical model
one-by-one, until only the variables of interest are left. As each (unobserved) variable Xi

is eliminated, the set of potentials involving Xi is replaced by a single new potential ΨXi

constructed by marginalizing over Xi. Graphically, this corresponds to eliminating the
variable and its edges, and fully connecting its neighbors - since with the elimination of Xi

they are generally no longer conditionally independent.

The input to variable elimination:

• V , a set of variables;

• Φ = {φ}, a set of of potential functions over V ;

• O = {〈Xj = xj〉}, observations of a subset of V (possibly empty);

• π, the elimination order, an ordered subset of V ; for simplicity, π is assumed to
include the observation varibles O.

The output:

• φZ , a table over Z = V − π, the set of variables not eliminated. Each entry φZ(z) is
the joint probability of Z = z and the observations, marginalized over the eliminated
variables.

φZ = ELIMINATE(V , Φ = {φ}, π = X1 . . .Xm, O = {〈Xj = xj〉})

for Xi in π

Φi = {φ ∈ Φ|Xi ∈ domain(φ)} // potentials involving Xi

if 〈Xi = v〉 ∈ O
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// Xi is observed: create new potentials by fixing Xi

for φ ∈ Φi
N = domain(φ) \ {Xi}
φ′ = new potential over variables N

for each config x in ΩN
φ′(x) = φ(x, v)

Φ = Φ ∪ {φ′}
else

// compute new potential by marginalizing over Xi

Ω =
⋃
φ∈Φi

domain(φ) \ {Xi} // neighbors of Xi

φ′ = new potential over variables N

for each config x in Ω
φ′(x) =

∑
xi∈Xi

∏
φ∈Φi

φ(x, xi)

Φ = Φ ∪ {φ′}

//eliminate Xi and its potentials

V = V \ {Xi}
Φ = Φ \ Φi

//compute table over remaining variables

φZ = new potential over remaining variables V

for each config x in V

φZ(x) =
∏

ψ∈Φ φ(x)

return φZ
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3 Example

3.1 An elimination that is valid for any potentials

A

B C

D E

F

A

B C

D E

F

The factorization P = PAPB|APC|APD|ABPE|BCPF |E with directed graph above left, after
moralization has factorization P = φAφABφACφABDφBCEφEF and graph above right.

Suppose the goal is to compute PCD|F=1; this is accomplished by first computing the joint
PCD,F=1 using VE, by eliminating A, B, E and F . After choosing an elimination order
(here, arbitrarily, FEAB), VE gives a table of over the remaining variables:

φCD = ELIMINATE({ABCDEF} , {φAφABφACφABDφBCEφEF} , {FEAB} , {〈F = 1〉})

and then

P (C = c,D = d|F = 1) =
φCD(c, d)∑
cd φCD(c, d)

.

The intermediate stages of variable elimination are as follows:
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Var. Neigh New factorization New graph

P = φAφABφACφABDφBCEφEF

A

B C

D E

F

F E
P = φAφABφACφABDφBCEφ

1
E

φ1
E(e) = φEF (e, 1)

A

B C

D E

E B,C
P = φAφABφACφABDφ

2
BC

φ2
BC(bc) =

∑

e

φBCE(bce)φ
1
E(e)

A

B C

D

A B,C,D

P = φ2
BCφ

3
BCD

φ3
BCD(bcd) =

∑

a

φA(a)φAB(ab)

φAC(ac)φABD(abd)

B C

D

B C,D
P = φ4

CD

φ4
CD(cd) =

∑

b

φ2
BC(bc)φ

3
BCD(bcd)

C

D
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3.2 Elimination that takes advantage of Bayes Net parametriza-

tion

In the previous section, the VE was carried out without regard to the probabilistic se-
mantics of the potentials. Now we will repeat the elimination exploiting the fact that
the potentials are conditional probabilities of the form PX|pa(X). Hence, whenver we en-
counter an elimination of the form φnewY (y) =

∑
x PX|Y (x|y) we will know that the resulting

potential φnewY ≡ 1 and therefore we will not carry it over in the computation.

In terms of the graph representation, we shall start with the original DAG, ignoring the
directionality of the edges, but not moralizing [Exercise: why?]. When a new potential is
equal to 1, no new edges will be added to the graph. The rest of the algorithm proceeds
as before.

We repeat the elimination in section 3.1 under the modified algorithm. To better illustrate
what happens, a new elimination ordering (F,D,E,A,B, with query variable C) is used
[Exercise: do the elimination with the previous ordering too.]
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Var. Neigh New factorization New graph

P = PAPB|APC|APD|ABPE|BCPF |E

A

B C

D E

F

F E
φ1
E(e) = PF |E(e, 1)

P = PAPB|APC|APD|ABPE|BCφ
1
E

A

B C

D E

D A,B
φ2
AB(ab) =

∑

d

PD|AB(d|ab) ≡ 1

P = PAPB|APC|APE|BCφ
1
E

A

B C

E

E B,C
φ2
BC(bc) =

∑

e

PE|BC(bce)φ
1
E(e)

P = PAPB|APC|Aφ
2
BC

A

B C

A B,C
φ3
BC(bc) =

∑

a

PA(a)PB|A(b|a)PC|A(c|a)

P = φ2
BCφ

3
BC

B C

B C
φ4
C(c) =

∑

b

φ2
BC(bc)φ

3
BC(bc)

P = φ4
C

C
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4 Computational complexity and induced width

The computational work done in VE is primarily the calculation of new potentials. A
potential over n binary variables is a table of 2n values, each computed by summing a
product of potentials over an eliminated variable. , so the total computational cost of
computing a new potential over n variables is 2n+1×(the number of potentials multiplied).

Every step eliminates one variable, and create one new potential. Thus, the total number
of steps is n = |V | and the total number of new potentials is (at most) n. Thus, if we
start with O(n) potentials (this istrue for Bayes nets but not always for MRF’s), the total
number of potentials involved is also O(n). If c is the maximum number of variables in
any potential under a particular elimination order π. It follows that the time complexity
of the entire variable elimination is O(n2c+1). (However finding the elimination order that
minimizes c is an NP-complete problem!)

Define the induced width of G under π, wπ, to be the maximum size of the neighbor set N
in the execution of ELIMINATE for an ordering π over all the variables in the graph (total
elimination). Define the elimination width to be the minimum of wπ over all elimination
orders. It is not hard to see that the elimination width of an unconnected graph is 0, of
any tree is 1 (achieving this requires the right choice of elimination order), and of a loop is
2.

There are a variety of different ways of defining graph complexity that are all equivalent; a
graph’s elimination width can be shown to be equal to its tree width, a complexity measure
related to the decomposition of the graph into a tree of cliques that we will explore as part
of the junction tree algorithm.
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