
STAT 535 Lecture 7

The Junction Tree Algorithm

c©Marina Meilă

mmp@stat.washington.edu

1 Preliminaries

Denote by V the set of variables of interest. For any variable X ∈ V , denote
by ΩX the set of values that can take, by rX = |ΩX | the number of values
and by x ∈ ΩX a particular value. The same conventions extend to a set
C ⊆ V , i.e we’ll talk about ΩC , rC = |ΩC |, c ∈ ΩC a configuration of values
for the variables in C. We continue to assume for now that all variables are
discrete and finite valued.

Let {C} the set of (maximal) cliques of a junction tree, and {S} the set
of separators. The general form of a probability distribution that factors
according to a junction tree ({C}, {S}) is

PV (v) =

∏

C PC(c)
∏

S PS(s)
(1)

The implementation of the junction tree that we study here maintains a
table φC to store each marginal PC and another set of tables φS to store
the separator marginals φS . We distinguish between marginal distributions
PC , PS which are mathematical objects, and the data structure where they
are stored φC , φS . The reason is that, during intermediate phases of various
algorithms on the junction tree data structure, the values stored in the tables
φC , φS will not always coincide with the marginal values. We may also call
φC , φS potentials.

For two neighboring cliques C,C ′ connected by separator S, with C \ S =
U, C ′ \ S = U ′, we say that φC is calibrated with φS , denoted φC ∼ φS iff

∑

u

φC(u, s) = φS(s) for all s (2)

1

We define φC ∼ φC′ as

∑

u

φC(u, s) =
∑

u′

φC′(u′, s) for all s (3)

We say that a junction tree data structure is calibrated if all neigh-
boring potentials are calibrated.

We say that a potential φC (φS) is normalized iff
∑

c φC = 1 (
∑

s φS = 1).
The junction tree is normalized iff all potentials are normalized.

Obviously, if every potential contains the corresponding clique or separator
marginal, then the junction tree is normalized and calibrated.

2 Junction tree propagation

We start with a trivially simple case, which will help us establish the neces-
sary concepts, then we go on with progressively more complicated cases.

2.1 The case of a single clique

Assume V = C consists of a single clique, and that variable E ∈ V (the
evidence) is observed, i.e E = e0. We would like to obtain a representation
for PV \E|E=e0 and from it to extract the updated belief PX|E=e0 about some
variable X ∈ V \ E.

Let us pose the problem this way:

• PV is the prior = what we know about the domain before we see the
evidence

• δE=e0(v) is the function on ΩV that is 1 if E = e0 in v and 0 otherwise.
This represents the likelihood.

• By Bayes rule, the posterior ∝ prior × likelihood, i.e PV |E=e0 ∝
PV δE=e0

• Also by Bayes rule, the normalization constant in the above is
Z = PV (E = e0) the prior probability of the evidence

2

The following (trivially simple!) algorithm implements the observations
above.

“Propagation” Algorithm 1
φC = PV

1. φC ← φCδE=e0 Enter evidence φC ← PC\E,E=e0

2. Normalize φC ⇒ Z = PV (E = e0) φC ← PC\E|E=e0

Now φC contains PV |E=e0. For any X ∈ V we can obtain PX|E=e0 by
marginalizing in φC .

2.2 The case of two cliques

Assume now that the junction tree over V has two cliques

C S C’

with U = C \ S, U ′ = C ′ \ S and E ∈ C is observed.

We have

• Prior: PV = φCφC′/φS

• Likelihood: δE=e0(v)

• Posterior: PV |E=e0 ∝ PV δE=e0

• Normalization constant: Z = PV (E = e0)

The unnormalized posterior can be written like this:

PV δE=e0 =
δE=e0φCφC′

φS

(4)

=
(δE=e0φC)

(

φC′
φnew
S

φS

)

φnew
S

(5)

where φnew
S (s) =

∑

u φC(u, s) is the S-marginal of table φC . The operation
corresponding to (5) is called absorbtion; we say that clique C ′ absorbs
from C.

3

Absorb(C → C ′)
Input potentials φC , φS , φC′

1. φnew
S (s) =

∑

u φC(u, s)

2. φC′ ← φC′
φnew
S

φS

3. φS ← φnew
S

This operation has the following simple properties, whose proofs are left
as an exercise. Denote by φV =

∏

C φC/
∏

S φS the “joint distribution”
represented by the data structure consisting of the potential tables φC , φS .

After absorbtion:

• φC ∼ φS

• φV is left invariant

• φC normalized before absobtion ⇒ φS normalized after absorbtion

• φC′ ∼ φS (and φC normalized) before absorbtion ⇒ φC′ ∼ φC (and
normalized) after absorbtion

We can write now a new (still very simple) “propagation” algorithm.

“Propagation” Algorithm 2
φV = PV

1. φC ← φCδE=e0 Enter evidence φV ← PV δE=e0 = PV \E,E=e0

2. Normalize φC φV ← PV \E|E=e0

3. Absorb(C → C ′) Distribute evidence φV invariant

The data structure that contained PV before now contains PV |E=e0. For
any X ∈ V we can obtain PX|E=e0 by marginalizing in φC , for some clique
C that contains X.

2.3 Any junction tree, evidence in one clique

Assume as before that the junction tree is normalized and calibrated, rep-
resenting a valid PV . We observe variable E ∈ C.

4

ABC BCD BE
BC B

Figure 1: A junction tree.

To handle this case, we will think of the junction tree as a rooted tree
with the root at clique C. One absorbtion from C to a child C ′ through
separator S will make φC ∼ φS ∼ φC′ . It is easy to see that, if we repeat this
operation recursively, the whole junction tree will be made calibrated. This
procedure is called distribute evidence. Moreover, if φC is normalized
before distributing the evidence, then the final tree will be normalized as
well.

Propagation Algorithm 3
φV = φV

1. φC ← φCδE=e0 Enter evidence φV ← PV δE=e0 = PV \E,E=e0

2. Normalize φC Normalize φV ← PV \E|E=e0

Z = PE(E = e0)
3. Recursively on the tree with root C Distribute evidence φV invariant

starting with C̃ = C

for all children C ′ of C̃

Absorb(C̃ → C ′)

After Propagation Algorithm 3 the data structure that contained PV

will contain PV |E=e0. For any X ∈ V we can obtain PX|E=e0 by marginal-
izing in φC′ , for any clique C ′ that contains X.

Example Consider the junction tree in figure 1. (a) Assume A = 0 is
observed.

φABC ← φABCδA=0 Enter evidence

normalize φABC Normalize

φnew
BC ←

∑

a φABC Absorb(ABC → BCD)

φBCD ← φBCD
φnew
BC

φBC

φnew
BC → φBC

φnew
B ←

∑

cd φBCD Absorb(BCD→ BE)

φBE ← φBE
φnew
B

φB

φB ← φnew
B

5

(b) Assume now B = 1 is observed.

φBCD ← φBCDδB=1 Enter evidence

normalize φBCD Normalize

φnew
BC ←

∑

d φBCD Absorb(BCD→ ABC)

φABC ← φABC
φnew
BC

φBC

φnew
BC → φBC

φnew
B ←

∑

cd φBCD Absorb(BCD→ BE)

φBE ← φBE
φnew
B

φB

φB ← φnew
B

Exercise: Could one execute the first example, and then the other on the
result of the first? What would the junction tree represent after propagations
a. and b. are completed?

[Analogy with Markov Chains - the Forward algorithm]

2.4 Any junction tree, evidence in multiple cliques

Assume we observe variables E1 ∈ C1, E2 ∈ C2, . . . so that no single clique
contains all of them. Let E = {E1, E2, . . .} and e0 = (e0,1, e0,2, . . .) denote
the set of observed variables, respectively the observed configuration. Let

δE=e0(v) = δE1=e0,1(v)δE2=e0,2(v) . . . =

{

1 if E = e0 in v
0 otherwise

(6)

Propagation Algorithm 4 (=Junction Tree Algorithm)
1. For every observed variable Ej find clique Cj that Enter evidence

contains Ej . Set φCj
← φCj

δEj=e0,j

2. Choose a root clique C.

Recursively on the rooted tree with root C, starting with C̃ = C Collect evidence

for all C ′ children of C̃

i. C̃ calls Collect evidence in C ′

ii. Absorb(C ′ → C̃)
3. Normalize φC and store Z =

∑

xC\E
φ(xC) Normalize

4. Recursively on the rooted tree with root C, Distribute evidence

starting with C̃ = C

for all children C ′ of C̃ Absorb(C̃ → C ′)

6

After Propagation Algorithm 4 the data structure that contained PV

will contain PV |E=e0. For any X ∈ V we can obtain PX|E=e0 by marginal-
izing in φC′ , for some clique C ′ that contains X.

It can be shown that at the end of algorithm 4, the junction tree obtained is
normalized and calibrated. This is true even when the original junction tree
(before entering evidence) is not normalized, nor calibrated. Therefore, one
can use the Junction Tree algorithm to make calibrated a tree obtained
from a Bayes net or MRF.

An example Consider again the junction tree in figure 1, Observed A =
0, E = 1

φABC ← φABCδA=0 Enter evidence

φBE ← φBEδE=1

Choose rootABC Collect evidence

φnew
B ←

∑

e φBE Absorb(BE → BCD)The “sum” has 1 term only!

φBCD ← φBCD
φnew
B

φB

φB ← φnew
B

φnew
BC ←

∑

d φBCD Absorb(BCD→ ABC)

φABC ← φABC
φnew
BC

φBC

φBC ← φnew
BC

normalize φABC Normalize

φnew
BC ←

∑

a φABC Absorb(ABC → BCD)

φBCD ← φBCD
φnew
BC

φBC

φBC ← φnew
BC

φnew
B ←

∑

cd φBCD Absorb(BCD→ BE)

φBE ← φBE
φnew
B

φB

φB ← φnew
B

Comment on computer implementations: If one of the observed variables is
in multiple cliques, then the separator potentials will contain zeor values.
Since the algorithm has divisions by φS we need to convince ourselves that
we are: (1) not going to divide by 0 and (2) not going to encounter zero
over zero.

We can ensure this with the simple rule that: if in a clique potential
φC(xC) = 0 for some value xC , then, when C is absorbing from a neighbor
clique, the respective xC entry will not be updated. This is correct because

7

if the entry is zero, multiplication with anything will leave it at zero. This
is also sufficient, because: (i) the only divisions occur in this step of absorb-
tion, (ii) division is always by the “old” separator, (iii) if an “old” separator
has φS(xS) = 0, then the destination clique will always have φC(xC) = 0 for
all xC calibrated with xS . The latter is true because in the JT algorithm
the “old” separator tables are either: (a) calibrated with the destination
cliques, or (b) have ≥ 0 values for the configurations where the destination
clique potential φC has a zero (if evidence was introduced in C), or (c) are
1 (as in the next section).

[Analogy with the Forward-Backward algorithm for Markov Chains]

3 Compiling a Bayes Net or MRF to a junction

tree

Bayes net To compile a Bayes net into a junction tree that is it’s I-map,
we need to

Construct the junction tree structure

1. Moralize the graph, and transform it into an undirected graph. If the
Bayes net is a decomposable model, no edges will be added.

2. Triangulate the graph. If the Bayes net is a decomposable model, no
edges will be added. Construct the junction tree graph.

Parametrize, i.e. fill in the potentials φC , φS

3. Set φC ≡ 1, φS ≡ 1

4. For each X ∈ V ,

(a) choose a clique C that contains X ∪ pa(X)

(b) φC ← φCPX|pa(X)

5. Run the Junction Tree Algorithm without entering evidence to
make the junction tree calibrated

A few comments on the parametrization: In step 4, one can easily see that
each factor PX|pa(X) is entered only once so that at the end of this step

8

∏

C φC/
∏

S φS =
∏

X PX|pa(X). If there is one clique that contains its correct
marginal, and if that clique is chosen as the root in step 5, then in step 5
one only needs to perform Distribute evidence, instead of the whole junction
tree algorithms.

Markov random field Assume we have a MRF with cliques {C̃} and clique
potentials {φ̃C̃}

Construct the junction tree structure

1. Triangulate the graph. If the MRF is a decomposable model, no edges
will be added, and the clique potentials will be proportional to the
marginals. Construct the junction tree graph.

Parametrize, i.e. fill in the potentials φC , φS

2. Set φC ≡ 1, φS ≡ 1

3. For each C̃ clique in the MRF,

(a) choose a clique C that contains C̃

(b) φC ← φC φ̃C̃

4. Run the Junction Tree Algorithm without entering evidence to
make the junction tree calibrated

There are two differences w.r.t the compilation of Bayes nets: (1) no mor-
alization is needed, and (2) there is no guarantee that any φC contains a
marginal after step 3 so the junction tree algorithm in step 4 needs to both
collect and distribute.

Example Consider the Bayes net

A C

B D

E

whose junction tree is depicted in figure 1. For this network, step 4 could
be

φABC ← φABCPA

9

φABC ← φABCPB|AC

φBCD ← φBCDPC

φBCD ← φBCDPD|BC

φBE ← φBEPE|B

No clique contains its true marginal, so one must perform both a collect and
a distribute step.

10

