
STAT 535 Lecture 8

The Junction Tree Algorithm: Remarks, Variants, Sum-Product Algorithm

c©Marina Meilă

mmp@stat.washington.edu

Junction Tree Algorithm

1. For every observed variable Ej find clique Cj that Enter evidence

contains Ej . Set φCj
← φCj

δEj=e0,j

2. Choose a root clique C.

Recursively on the rooted tree with root C, starting with C̃ = C Collect evidence

for all C ′ children of C̃

i. C̃ calls Collect evidence in C ′

ii. Absorb(C ′ → C̃)
3. Normalize φC and store Z =

∑

xC\E
φ(xC) Normalize

4. Recursively on the rooted tree with root C, Distribute evidence

starting with C̃ = C

for all children C ′ of C̃ Absorb(C̃ → C ′)

Figure 1: Junction Tree Algorithm

1 Variations in message propagation

Exercise: show that the JT need not be calibrated before step 1, but it
must satisfy φV = PV

The propagation of Absorbtions can be asimilated with propagation of
information in the tree, in which a clique C sends a message to neighboring
clique C ′ consisting of φnew

S /φS . From now on we will often talk about the
algorithm in terms of message passing.

The order of the messages in CollectEvidence or DistributeEvidence

is not unique. For calibrated message propagation is sufficient that

Rule 1 before Absorb(C → C ′), C receives messages from all its neighbors other than C ′

Rule 2 Each clique must receive messages from all its neighbors.

1



Any schedule that complies with these rules is a valid schedule for JT prop-
agation, that will lead to a calibrated JT. If we also want normalization,
and if we want to perform it in a single clique only, then we need to be more
restrictive in the schedules.

There is a practical “exception” from the second rule above: if two cliques
are calibrated before Absorb, then the absorbtion needs not be performed.
Hence, the branches of the JT that contain no evidence do not need to
perform CollectEvidence. But they still need to be updated in the
DistributeEvidence phase. Exercise: why?

2 New evidence, retraction of evidence, uncertain

evidence

The JT framework can be summarized as follows:

prior enter evidence propagation, posterior
normalization

φV = PV φV ∝ PV \E|E φV = PV \E|E

calibrated uncalibrated calibrated

If now new evidence E′ = e′ is observed, we can treat the current φV as
prior, and perform another round of entering evidence and propagation.
The result will be that the data structure φV will contain the updated,
calibrated posterior of the unobserved variables given E = e,E′ = e′. And
so on.

The result of successive rounds of entering evidence and JT propagation
will be correct and cosistent, as long as the evidence is non-contradictory.
If contradictory evidence is entered, then after propagation φV ≡ 0. For
instance, if in the JT of Handout 7, Figure 1, we enter first A = 0 then
later A = 1, all the configurations with a 6= 0 will be set to 0 after the
first observation, including the ones with a = 1. Then, when we observe
A = 1, we also set to zero the configurations with a = 0, which means
that the whole clique potential becomes 0, and by propagation all of φV is
zero. This emphasizes the fact that, when we observe new variables, the

2



assumption is that the system of variables V is in a fixed but (paritally
unknown) configuration (e.g A cannot be both 0 and 1 in the same time) of
which we successively gather more knowledge.

But it is legitimate to ask another question: what if A were 1 and not 0 as
it was observed? This is called retraction of evidence. In the algorithm
given in Figure 1, we cannot do that, because we have destroyed the original
distribution PV when we entered the first observation (say A = 0). In order
to be able to retract evidence, the JT algorithm is modified as follows:

• The clique potentials φC = PC are never changed.

• One creates evidence messages with value δE=e0 which enter the re-
spective cliques (but they are not multiplied into the clique potentials)

• For each separator, instead of the “permanent” φS and the “tempo-
rary” φnew

S one keeps two messages, φC→C′

S and φC′→C
S one for each

direction of absorbtion.

• During Absorb(C → C ′) the message from C to C ′ is computed by
multiplying all the messages into C and marginalizing

φC→C′

S =





∑

xC§

φCδE∩C

∏

S′ 6=S

φC̃→C
S′



 /φC′→C
S (1)

but the destination φ′
C is not updated.

• To compute the posterior marginal, a clique multiplies all messages it
receives by its potential (and normalizes).

PC\E|E=e0 ∝ φposterior
C = φCδE∩C

∏

S′

φC̃→C
S′ (2)

This JT algorithm is initialized with φC = PC for all cliques C and with
φC→C′

S = 1 for all separator messages.

3 Relations with other algorithms and extensions

CollectEvidence(C) is equivalent to Variable Elimination (VE) of all
variables but those in C in an order given by the JT. The gain of JT algo-
rithm vs VE is that withCollectEvidence(C) followed byDistributeEvidence(C)
we perform simulataneously the variable eliminations for all cliques.

3



There are many similarities with the Forward-Backward (FB) algorithm.
The Forward step isCollectEvidence towards the last clique (plus marginal-
ization of the Qn−1). The Backward pass is CollectEvidence toward
the first clique (plus marginalization of Q2). Computing P (Qi|y) for some
1 < i < n is CollectEvidence towards [a clique containing] Qi (plus
marginalizing out the other variable, and normalization).

[Why Running Intersection Property?]

[Why tree?]

The JT algorithm is an example of several important classes of probabilistic
algorithms:

• Sum-Product algorithms

• Iterative Proportional Fitting (IPF)

• Generalized Distributive Law algorithms

4 The Shenoy-Shaefer algorithm: Sum-Product Al-

gorithm for junction trees

Data structure and Initialization This algorithm keeps a potential φC

for each clique. For each separator, there are two “potential” tables, one for
each direction of propagation. They are called messages and denoted by
µC→C′ , µC′→C .

The J.T. is rooted at clique C0 and the clique potentials are intialized to
the conditional probability given the parent clique

φC0
= PC0

(xC0
) φC(xC) = PC\pa(C)(xC\pa(C) |xpa(C)) (3)

so that PV =
∏

C φC

Entering evidence The evidence for an observed variable E is entered in
a single clique containing E. In this algorithm, rather than multiplying φC

by δE=e0 , one creates an evidence message µE=e0→C with destination C
and which is equal to δE=e0 .

4



The message between two cliques is given by

µC→C′ =
∑

xC\C′

φC(xC)
∏

C′′∼C,C′′ 6=C′

µC′′→C(xC\C′′) (4)

In the above, C ∼ C ′′ means that the two cliques are neighbors in the tree.
In other words, to send a message to a neighbor, C multiplies her potential
with the messages from all its neighbors besides C ′, and marginalizes out
the variables not in C ′.

If the clique C contains evidence, then the evidence messages are multiplied
in too (one creates a fictitious C ′′ for each evidence message that has to be
incorporated).

The propagation/message passing schedule Each clique can send a
message to a neighbor only after it has received messages (i.e “collected
evidence”) from all its other neighbors. An example of such a schedule is to
start the message passing from the leaves of the J.T and progress recursively
to the root. When the root receives messages from all its children, it in
turn sends messages back. These messages propagate recursively down the
tree from the root’s children down to the leaves. When all the leaves have
received their messages the algorithm terminates. (No messages are sent to
the evidence.)

Final state When the algorithm finishes, the JT data structure contains:

the same clique potentials φC as before

the evidence messages entered, unchanged

messages on each edge (each messages was calculated and updated
exactly once)

For each clique C, the marginal probability PC is

PC(xC) ∝ φC(xC)
∏

C′∼C

µC′→C(xC∩C′) (5)

In the above equation, the product includes the evidence messages.

Remarks and comparison with the J.T algorithm In this algorithm
there are no divisions, only multiplications. This is nice (in a little way)
from the point of view of coding (no danger of dividing 0/0). The reason

5



for this is that the separator potentials have already been divided out by
making φC = PC|pa(C).

The algorithm preserves the prior PV . This means one needs not save the
prior elsewhere when doing inference. It also makes it easy to retract or
change the evidence.

The price one pays is in the computation. For each neighbor to which C
sends a message, one must multiply all the messages from the other neigh-
bors before marginalizing. So there are a lot (Exercise: how many?) re-
dundant multiplications. The JT algorithm is faster because it does each
multiplication exactly once (plus a division).

[Example]

5 The Sum-Product algorithm

(see Jordan for more details)

A factor graph is a data structure that has

• variables A ∈ V

• factors C ⊂ V for arbitrary subsets of V (not necessarily cliques).

• potentials φA(xA), φC(xC) for every variable and every factor

• edges {A–C, for every C that contains A }

• messages along the edges: µC→A(xA) from factors to variables, and
νA→C(xA) from variables to factors

It is assumed that the potentials and messages are tables forming a data
structure. The joint probability represented by the data structure is given
by φV =

∏

A∈V φA

∏

C φC .

Evidence E = e0 is entered by multiplying the potentials of the observed
variables with the respective δ functions, i.e φE(xE)← φE(xE)δE=e0 .

6



The messages are

µC→A(xA) =
∑

xC\A

φC(xC)
∏

Y ∈C, Y 6=A

νY→C(xY ) (6)

νA→C(xA) = φA(xA)
∏

C′:A∈C′,C′ 6=C

µC′→A(xA) (7)

In words, to send a message to a variable A, a factor multiplies its poten-
tial with all the other messages it receives, then marginalizes over all the
variables but A. When a variable A sends a message to C, it multiplies its
potential by the messages it receives from all the other factors it is in, except
for C.

The message passing schedule has to obey

Rule 1 before sending a message to a factor C (or variable A), a variable
(factor) must receive from all it neighbor factors (variables) other than
receives messages from all its neighbors other than C (A)

Rule 2 Each variable (factor) must receive messages from all its neighbors.

The marginal of a variable is given by

PA(xA) ∝ φA

∏

C:A∈C

µC→A(xA) = νA→C′(xA)µC′→A(xA) for any C ′ containingA

(8)

Correctness The Sum-Product algorithm gives the correct marginals only
if the factor graph has no cycles.

7



5.1 Examples of factor graphs

Bayes net Factor graph for Bayes net

A

C B E

D

A B E

ABC BCD BE

C D

Markov field Factor graph for Markov Field

A B E

C D

A B E

ABC BCD BE

C D

Junction Tree Factor graph for junction tree

ABC BCD BE
BC B

BC B

ABC BCD BE

A D E

or

ABC BC B BE

A BCD D E

Note that in a junction tree, the separators play the role of variables, and
the cliques play the role of factors.

8


