
Lecture 4: Combining predictors – Part II

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

November, 2015

Boosting as descent in function space
Boosted predictors are additive models
AdaBoost is steepest descent on training set
A statistical view of boosting

More surrogate losses, more boosting algorithms
Why the e−yf loss? other surrogate losses

Practical remarks and theoretical results
Practicalities
Theoretical results

Extensions of boosting
Boosting for multiclass and ranking
[Multiplicative updates algorithms]

Reading HTF: 15. Random Forests, 16. Ensembles of predictors, 8. Model inference and

averaging, 10. Boosting, Murphy: 16.3, 16.3.1 Generalized Additive models (ignore the

regularization, for ”smoother” read ”minimize loss function”), 16.4.1-5 [and optionally 8] Bosting,

3.2.4 Bayesian model averaging, 16.6.3, 16.6.1 Ensembles of predictors

Boosted predictors are additive models

An additive model (for prediction) has the form

f (x) ≡ E [Y |x] = α+ b1(x1) + b2(x2) + . . .+ bn(xn) (1)

In other words, it is a linear model, where each coordinate has been non-linearly
transformed. A generalization of the above definition, which is still called an additive
model, is

f (x) = α+ β1b1(x) + β2b2(x) + . . .+ βM bM (x) (2)

This is a linear model over a set of new features b1:M .

Example (Linear model and neural net)

If bj = xj , j = 1 : n, the model (2) is a linear model.

If bj ∈ { 1

1+e−γT x
, γ ∈ Rn} = B (the family of logistic functions with parameter

γ ∈ Rn) then f (x) is a [two layer] neural network.

Additive Logistic Regression While the predictors above are well suited for regression,
for classification one may employ a logistic regression, i.e

f (x) ≡
P(Y = 1|x)

P(Y = −1|x)
= α+ β1b1(x) + β2b2(x) + . . .+ βM bM (x) (3)

[Generalized Additive Models. Link function. See supplementary notes]

How to train an Additive Model?

[Alg 9.2 HTF for Additive Logistic Regression]
An additive model for prediction can be trained in several different ways.

Given base family B, data D, loss function L

I Fix M from the start and optimize over all the parameters and base functions at
once.

I Backfitting Fix M from the start but optimize only one bj , βj at a time, keeping
the others fixed

I Forward fitting Optimize bk , βk sequentially, for k = 1, 2, . . . without refitting
previously fit base models. In this case, M need not be fixed in advance.
It turns out that this is what boosting does.

AdaBoost is steepest descent on training set

We will show that boosting is a form of (stochastic) gradient descent on the surrogate

loss L̂φ (we already know from Part I that AdaBoost pushes L̂φ asymptotically
towards 0).

Assume we want to minimize the surrogate loss L̂φ on the training set. For any finite

D, f and b ∈ B affect L̂φ only via the N-dimensional vectors of their values on D
(which we will abusively denote by f , b)

f =


f (x1)
f (x2)
. . .

f (xN)

 b =


b(x1)
b(x2)
. . .

b(xN)

 (4)

Thus, L̂φ(f) is a function of N variables, with partial derivatives

∂L̂φ

∂f (x i)
=

∂

∂f (x i)

[
1

N

N∑
i=1

φ(y i f (x i))

]
=

1

N
y iφ′(y i f (x i)) = −

1

N
y i e−y i f (x i), (5)

since φ′(z) = −e−z . Imagine a boosting step as trying to find a change βb in f which

minimizes the loss L̂φ(f + βb). This minimization is equivalent to maximizing the

decrease in loss L̂φ(f)− L̂φ(f + βb).

The direction of descent
The change in Lφ along “direction” b with step size β is approximately

L̂φ(f)−L̂φ(f +βb) ≈ −
(
∇fL̂φ(f)

)T
(βb) =

∑
i

[(
1

N
y i e−y i f (x i)

)
(βb(x i))

]
∝
∑

i

y i b(x i)wi

(6)

(denoting/recalling wi ∝ e−yi f (x i)).
The direction of steepest descent b is therefore the maximizer of

argmax
b∈B

∑
i

wi yi b(x i) (7)

where in the sum on the r.h.s we recognize the r of AdaBoost.

I If b(x i) = ±1 values, then 1− yi b(x i) = 1[i error], and maximizing (7) is the same

as minimizing the weighted training error L̂w
01.

I If b takes real values, then yi b(x i) is the margin of example i , and maximizing
(7) is a natural objectiv for many training algorithm. Exercise Can you find examples

of algorithms/predictors which do/don’t maximize the loss in (7)?

More generally (we will use this later), the direction b maximizes∑
i

yi b(x i)[−φ′(yi f (x i))] (8)

Finding the direction b is equivalent with step 1 of the AdaBoost algorithm, training
a weak classifier on the weighted data. The resulting b can be seen as the best
approximate of the gradient of Lφ in B.

The line minimization

Now let us do line minimization: find the optimal step size β in direction b. For this
we take the derivative of L̂φ(f + βb) w.r.t β and set it to 0.

dL̂φ(f + βb)

dβ
=
∑

i

yi b(x i)φ′(yi f (x i)) = −
∑

i

yi b(x i)e−yi f (x i)−βyi b(x i) (9)

β is the (unique) root of ∑
i

wi yi b(x i)e−βyi b(x i) = 0 (10)

If • b(x) ∈ {−1, 1} then line optimization gives βk from AdaBoost
• b(x) ∈ [−1, 1] then line optimization gives βk from AdaBoost approximately
• b(x) ∈ (−∞,∞) then β amounts to a rescaling of b and is redundant.

Calculating βk for binary b’s

Assume b(x) ∈ {±1}.
In this case y i b(x i) = ±1 and we obtain

dL̂φ(f + βb)

dβ
=

∑
i corr

wi e
−β −

∑
i err

wi e
β = 0 (11)

0 = (1−
∑
i err

wi)− (
∑
i err

wi)︸ ︷︷ ︸
εk

e2β (12)

β =
1

2
ln

1− εk

εk
(13)

This is the βk coefficient of step 4 of AdaBoost

Hence, the AdaBoost algorithm can be seen as minimizing the loss Lφ(f) by
steepest descent in the function space spanB.

RealAdaBoost

The third case corresponds to the RealAdaBoost in the FHT variant, described
here for completeness
Real AdaBoost Algorithm (in the FHT variant)

Assume B contains real-valued functions
Input M, labeled training set D

Initialize f = 0
w1

i = 1
N

weight of datapoint x i

for k = 1, 2, . . .M
“learn classifier for D with weights wk ⇒ bk ”

compute new weights wk+1
i = wk

i e−y i bk (x i) and normalize them to sum to 1

Output f (x) =
∑M

k=1 bk (x)

A statistical view of boosting

It has been shown [Friedman et al., 1999] (FHT) that boosting can also be seen as
noisy gradient descent in function space when we replace the finite training set with
the true data distribution. The loss function and gradient can be given a probabilistic
interpretation. This point of view is useful in two ways:

1. It shows that boosting is asymptotically minimizing a reasonable loss function, so
that we can expect the performace/and algorithm behavior on finite samples to
be a good predictor on its behaviour with much larger samples.

2. It is an interpretation that allows on to create a very large variety of boosting
algorithms, like the LogitBost, Gentle AdaBoost and GradientBoost,
presented hereafter.

Assume

I we do boosting “at the distribution level”, i.e using PXY instead of the empirical
distribution given by D.

I The loss function is Lφ(f) = E [e−yf (x)].
The notation E [] denotes expectation w.r.t the joint PXY distribution.

I learning a classifier means “find the best possible minimizer to Lφ(f)”

Is Lφ a good loss?

Proposition

Denote px = PXY (y = 1|x). The loss Lφ(f) is minimized by

f ∗(x) =
1

2
ln

PXY (y = 1|x)

PXY (y = −1|x)
=

1

2
ln

px

1− px

And px = ef (x)

ef (x)+e−f (x) the logistic function.

Exercise Does the expresion of px look familiar? What is the connection?

Proof Since we are minimizing over all possible f ’s with no restrictions, we can
minimize separately for every f (x). Hence, let x be fixed

EPY |X =x
[e−yf (x)] = P(y = 1|x)e−f (x) + P(y = −1|x)ef (x)

and the gradient is

∂E [e−yf (x)|x]

∂f (x)
= −P(y = 1|x)e−f (x) + P(y = −1|x)ef (x)

By setting this to 0 the result follows. �

In summary f ∗ is the Bayes optimal predictor for Lφ. But by the Proposition, f ∗ is
also Bayes optimal for L01. (Good!)

Steepest descent on Lφ(f) is (like) RealAdaboost

Proposition

The Real AdaBoost (with “learn a classifier” defined at the distribution level) fits
an additive logistic regression model f by iterative descent on Lφ(f).

Proof The proof is similar to that for the training set case.
Suppose we have a current estimate f (x) and seek to improve it by minimizing
Lφ(f + b) over b. In the proof we assume that b is an arbitrary function, while in
practice b will be chosen to best approximate the ideal f within the class B.
Denote by px = P[y = 1|x] (the true value) and by p̂x the “estimate”

p̂x =
ef (x)

ef (x) + e−f (x)
(14)

Assume again x is fixed. Then,

Lφ(f + b) = E [e−yf (x)−yb(x)]

= e−f (x)e−b(x)px + (1− px)ef (x)eb(x)

Taking the derivative and setting it to 0 we obtain the new step:

b(x) =
1

2
ln

px e−f (x)

(1− px)ef (x)
=

1

2

[
ln

px

1− px
− ln

p̂x

1− p̂x

]
(15)

Note that if one could exactly obtain the b prescribed by (15) the iteration would not
be necessary.

(Proof, continued)
More interesting than the exact form of b above is the optimization problem that
leads to it.
Denote w(x , y) = e−yf (x). Then, b is the solution of

b = argmin
b∈B

EPXY w(X ,Y)[e−Yb] (16)

where PXY w(X ,Y) denotes the (unnormalized) twisted distribution obtained by
multiplying the original data distribution with w(x , y). (Of course, one may have to
put some restrictions on PXY and B in order to obtain a proper distribution.) Finally,
note that the new f is f + b and the new weights are w(x , y)e−yb(x) which finishes
the proof.
Hence, the Real AdaBoost algorithm can be seen as a form of “noisy gradient”
algorithm at the distribution level. (Note that the minimization in equation (16) is
over both direction and scale of f .)

Why the e−yf loss? and other Lφ losss

I We saw that Lφ is statistically motivated. Now we will see that it is
computationally motivated as well.

I Recall: The “true” classification loss L01 is nonsmooth (has 0/no derivatives),
non-convex. For training, one uses surrogate losses.

I Want surrogate L to have the following properties
I φ(z) is an upper bound of the 0–1 loss
I φ(z) is smooth (has continuous derivatives of any order if f has them); (this lets us use

continuous optimization techniques to fit the classifier)
I φ(z) is convex (this leads to global optimization, which has been recognized as

beneficial in practice; it also allows to prove bounds, rates of convergence and so on)
I φ(z) is monothone (decreasing) (thus, when z > 0, driving the margins to increase

even if the classification is correct).

These properties are satisfied by Lexp(z) = e−z

Surrogate losses and boosting algorithms

A cornucopia of loss functions

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

yF

C
os

t

0−1 cost
exp(−yF)
−log(likelihood)

(yF−1)2

(sometimes good to have L(z) decrease for all

z < 0, and sometimes bad – causes overfitting)

. . . and of boosting algorithms

I GentleAdaBoost: approx Newton on
Lexp

I Least-SquaresBoost: many
operations in closed form

I LogitBoost Llogit (z) = ln(1 + e−z)
slower (almost linear) decrease for
z � 0

I AnyBoost, GradientBoost work
with any L

GradientBoost

GradientBoost Algorithm
Given B contains real-valued functions, loss L differentiable
Input M, labeled training set D

Initialize f 0(x) = β0 = argminβ∈R L̂(β)
for k = 0, 1, 2, . . .M − 1

1. compute ri = −y iφ′(y i f (x i))
2. fit bk (x) to outputs ri

3. find βk = argminβ∈R L̂(f k + βbk) (univariate optimization)

update f k+1(x) = f k (x) + βk bk (x)

Ouput f M (x)

I Can be used for either classification or regression

I Works with any L

I If L convex, step 3 is convex optimization (efficient)

I Proposed first as AnyBoost, later specialized for B =decision/regression trees,
with other tweaks and new name GradientBoost

I When B =CART
I step 3 optimizes over every leaf separately
I depth of trees J represents maximum number of interactions in f ; should not be too

large (B must be weak)

Practical aspects

Overfitting in noise When the classes overlap much (many examples in D
hard/impossible to classify correctly) boosting algorithms tend to focus too much on
the hard examples, at the expense of overall classification accuracy. The same
happens for outliers. Observe also that the loss function(s) in the previous figure,
which penalize more as the margin becomes more negative.
Choice of features Often times, the base class B consists of function of the form
b(x) = xj − a, which perform a split on coordinate xj at point xj = a. They have the
advantage that they can be learned and evaluated extremely fast. One can also
augment the coordinate vector x with functions of the coordinates (e.g.
x → [x1 . . . xd x1x2 x1x3 . . .]) essentially creating a large set of features, which
corresponds to finite but very large B. In such a situation, the number of features d
can easily be larger than M the number of b’s in the final f . Thus, boosting will be
implicitly performing a feature selection task.

When to stop boosting?

The idea of Cross-Validation (CV) is to use an idependent sample from PXY , denoted
D′ and called the validation set to estimate the expected loss L01(f). When
overfitting starts, L01(f k) will start increasing with k. Boosting is the stopped at the

value M that minimizes L̂01(bk ;D′) (denoted Lcv below to simplify notation)
AdaBoost with Cross-Validation

Given Training set D of size N, validation set D of size N′, base classifier B
Initialize

1. while LCV decreases (but for at least 1 step)
I do a round of boosting on D
I for i ′ = 1 : N′ compute f (x i′)← f (x i′) + βk bk (x i′)
I compute LCV

01 = 1
N′

∑
i′ 1

[yi′ f (xi′)<0]

How to choose a loss φ?

Can we analyze which loss functions φ are “better”? Can we offer some guarantees in
terms of generalization bounds? The answers are in [Bartlett et al., 2006] Bartlett,
Jodan & McAuliffe,”Convextity, classification and risk bounds”, 2005 (BJM).
We will restrict ourselves to convex, almost everywhere differentiable losss φ that are
upper bounds of the 0-1 loss.
Let p = P[Y = 1|X], z = f (X). Then the expected loss of classification at X is

Cp(z) = pφ(z) + (1− p)φ(−z) (17)

and the optimal loss is

H(p) = min bz Cp(z) attained for f ∗ =
1

2
ln

p

1− p
(18)

Let H− denote the smallest loss for a misclassification

H−(p) = inf
sgnz=−sgn(2p−1)

Cp(z) (19)

Intuitively, we are minimizing φ instead of the “true” misclassification loss, and we
want to measure how much we can be off when doing this. The following results say
that we can bound the “true” loss L01(f) in terms of the φ-loss Lφ.
We say φ is classification calibrated if H−(p) > H(p) for all p 6= 1/2. For φ convex,
we have that φ is classification calibrated iff φ differentiable at 0 and φ′(0) < 0.

Proposition

(Theorem 4 in BJM) If φ is classification calibrated and convex, then for any classifier
F

ψ(L01(f)− L∗01) ≤ Lφ(f)− L∗φ (20)

where L∗φ, L
∗
01 represent respectively the optimal φ-loss and optimal classification loss

on the given data distribution and ψ is

ψ(θ) = φ(0)− H(
1 + θ

2
) (21)

Loss function φ(z) Transform function ψ(θ)

exponential: e−z 1−
√

1− θ2

truncated quadratic: (max(1− z, 0))2 θ2

hinge: max(1− z, 0) |θ|
In BJM there are also more general theorems that do not assume φ is convex.
Furthermore, a convergence rate bound is given, which depends on: the noise in the
labels, a complexity parameter of the function class B, the curvature of φ. By
optimizing this expression w.r.t to B and φ one can theoretically choose the loss
function and/or the base classifier.

Consistency of AdaBoost

[Bartlett and Traskin, 2007] proved that a large family of boosting algorithms is
consistent. Below is an informal version of their main theorem.
Consistency is defined as L01(f tN)→ L∗01 for N →∞ and a tN a certain sequence of
stopping times that tends to infinity with N.
The conditions for consistency are as follows:

1. The function φ is convex, lower bounded (by 0) and calibrated as in section 2
2. The boosting step satisfies a weak leaning condition

L̂φ(f k) ≤ γ inf
b

L̂φ(f k−1 + αb) + (1− γ)L̂φ(f k−1) (22)

3. The set B is rich enough that the Bayes loss L∗φ can be attained by convex

combinations in B. There is a sequence f̄ k of k terms from B whose Lφ tends to
L∗φ

4. The empirical loss L̂φ converges to Lφ when N →∞ uniformly over all f which
are tN combinations

5. The empirical risks of f̄ k converge, i.e max{0, |L̂φ(f̄ N)− Lφ(f̄ N)|} → 0, a.s.
when N →∞

6. Algorithmic convergence max{0, |L̂φ(f tN)− L̂φ(f̄ N)|} → 0, a.s. when N →∞. In
other words, the boosting algorithm produces an approximate minimizer of the Lφ
risk if run for tN iterations

7. tN = n1−ε for some ε ∈ (0, 1) (e.g. increases slowly with N).

...and a loss bound

The following result applies to any classifier, but it was developed in response to the
idea that “boosting increases the margin” (which we now know is often, but not
always true). It proves essentially that large margins counter overfitting. As with all
worst-case bounds, the bounds are usually not realistic or practically applicable.

Proposition (to find citation)

Let F be a model class of VC-dimension h, with f (x) ∈ [−1, 1] for all x and for all
f ∈ F . Let δ > 0 and θ ∈ (0, 1). Then, with probability w.p. > 1− δ over training sets

L01(f) ≤
1

N
|{i | y i f (x i) ≤ θ}|+ Õ

(√
h

Nθ2

)
(23)

for any f ∈ F .

This theorem upper bounds the the true loss L01(f) using the number of margin errors
for an arbitrary margin θ. Note that for θ = 0 a margin error is also a classification
error, and for θ > 0 the number of margin errors is greater or equal to that of
classification errors. Hence, the first term of the bound increases with θ, while the
second term decreases. So, if most examples can be classified with a large margin (not
necessarily 1), then the bound of Theorem 4 can be tighter.

Multilabel classification

Multilabel classification is a setting where an example x can have multiple labels,
represented by the set Y (x), from a given finite set Y, with |Y| = L. One remaps the
set of labels to the binary vector y ∈ {±1}L by

yl =

{
1 if l ∈ Y (x)
−1 if l 6∈ Y (x)

for l ∈ Y (24)

There is a weight wil for each example i and each label l ∈ Y
AdaBoost.MH []

Input M, labeled training set D
Initialize f = 0

w1
il = 1

NL
for k = 1, 2, . . .M

learn classifier bk
l on D with weights wk

il predict label yl , l = 1 : L

evaluate error rk =
∑N

i=1

∑L
l=1 wk

il y i
l bk

l (xi)

calculate εk = 1−rk

2
, βk = 1

2
ln 1−εk

εk

compute new weights wk+1
il = 1

Z k wk
il e−y i

l bk
l (x i) and normalize them to sum to 1

Output f (x) = [fl (x)]l∈Y = [
∑M

k=1 bk
l (x)]l∈Y

The error εk is the sum of the errors on each label, in other words the Hamming
distance between the true vector y i and the vector [bk

l (x i)]l . This is symbolyzed by
the “H” in the name of the algorithm.
A variant of AdaBoost.MH that uses Error Correcting Output Codes (ECOC) for
multiclass single label classification is called AdaBoost.MO [].

Boosting for ranking
Ranking is considered in a broader sense, that includes

I ranking proper find a total ordering of the items x ∈ X (a given set). E.g when
search engines present web pages ranked by their relevance to the query.

I rating assign each x a label in a finite set Y. E.g. the “Netflix” problem, where
each movie is rated from 1 to 5 stars.

I retrieval label each item either 1 (relevant) or -1 (irrelevant). E.g the first task
some search engines perform when they are given a query. Note that this task
looks like a classification, but it differs in the fact that the x items are not
sampled iid.

Underlying assumptions (hidden in the algorithm below)

I The items x are represented by feature vectors in Rn; e.g x denotes in same time
a web page and the set of features describing this web page, which will be used
to infer the page label.

I The training set D contains many “queries”, each with an associated list of
labeled “documents” x . For the purpose of ranking, only pairs x , x ′ which
correspond to the same query and have different ranks must be considered.
These pairs are called crucial pairs. Thus, an algorithm that learns how to rank
data will look at pairs of x ’s and the differences in their labels in the same way as
a classification algorithm looks at single x vectors and their ±1 labels.

I The algorithm ignores the grouping by query. OK because the algorithm only sees
pairs that belong to the same query.

I The ranking is given by a real valued function f (x). In the ranking case, the
items x are ordered by their values; in the second case f is constrained to take
discrete values; in the third case sgn f provides the label.

RankBoost Algorithm
Initialize w1

x,x′ ∝ 1 for all (x , x ′) crucial pairs in the data. It is assumed that x � x ′,

i.e. that x is ranked after x ′.
for k = 1, 2, . . .K

1. train weak classifier bk on the crucial pairs weighted by wk
xx′

2. calculate rk =
∑

(x,x′) wk
xx′ (bk (x)− bk (x ′)); this is the average margin

3. calculate βk = 1
2

ln 1+rk

1−rk (see also notes below)

4. update weights wk+1
xx′ = 1

Z k wk
xx′e
−βk (bk (x)−bk (x′)) with Z k a normalization

constant
Output f (x) =

∑K
k=1 β

k bk (x)

Remark: there is more than one way to choose βk , and they are analogous to the
methods described on pages 11–12. The one in the algorithm above corresponds to
the case b(x) ∈ [0, 1]. For b(x)k ∈ {0, 1} a formula similar to that for
DiscreteAdaBoost is obtained. For bk (x) ∈ R it is recommended to minimize Z k

w.r.t β in order to obtain the best value. [Exercise: why?]

Multiplicative updates algorithms

Boosting can be seen as part of a larger class of multiplicative updates algorithms.
This area developed at the frontier between game theory and computer science, and in
machine learning. For a general and clear discussion of these algorithms see
[Arora et al.,] “The Multiplicative updates method”.
Weighted majority We have “experts” b1:M who can predict the stock market (with
some error). The predictions in this problem are binary, i.e {up, down} We want to

predict the stock market by combining their predictions in the function f =
∑k wk bk .

The following algorithm learns f by optimizing the weights wk .

Weighted Majority Algorithm
Initialize w0

i ← 1
for t = 1, 2, . . .

1. w t
i ← w t−1

i (1− ε) if expert i makes a mistake at time t
2. predict the outcome that agrees with the weighted majority of the experts

It can be shown that the number of mistakes mt of f up to time t is bounded by

mt ≤
2 ln M

ε
+ 2(1 + ε)mt

j (25)

where mt
j is the number of mistakes of any expert j . Thus, asymptotically, the number

of mistakes of the algorithm is about twice those of the best expert.
For a more general algorithm, that includes the above case, [Arora et al.,] prove that
to achieve a tolerance δ w.r.t to the optimal average loss, one needs to make
O(ln M/δ2) updates.

Feasibility problem for LP, with oracle

The problem is to find a point x ∈ Rn satisfying M linear constraints given by

Ax ≥ b, A ∈ RM×n, b ∈ RM (26)

The oracle is a blackbox which, given a single constraint cT x ≥ d returns a point x
satisfying it whenever the constraint is feasible. It is assumed that the oracle’s
responses x satisfy Ai x − bi ∈ [−ρ, ρ] for all rows i of A and that ρ is known.

Linear Program with Oracle parameters ρ, δ
Initialize wi = 1/M the weight of each constraint
for t = 1, 2, . . .T

1. Call Oracle with c =
∑

i wi Ai , d =
∑

i wi b
i and obtain x t

2. Penalty for equation i is r t
i = Ai x

t − bi

3. Update weights by

w t+1
i ← w t

i (1− ε · sgnr t
i)|r

t
i | (27)

with ε = δ
4ρ

and renormalize the weights.

Output x =
∑

t x t/T

The number of steps T ∝ ρ2.
In [Arora et al.,] it is shown (Exercise prove it based on the initial assumptions!) that (1) if
Oracle returns a feasible x t at all steps, then x satisfies Ai x − b + δ ≥ 0 i.e the
system is satisfied with tolerance δ; (2) if Oracle declares infeasibility in some step,
then the program is infeasible.

Arora, S., Hazan, E., and Kale, S.
The multiplicative weights update method: a meta algorithm and applications.

Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006).
Convexity, classification, and risk bounds.
Journal of the American Statistical Association, 101(473):138–156.

Bartlett, P. L. and Traskin, M. (2007).
Adaboost is consistent.
Journal of Machine Learning Research, 8:2347–2368.

Bauer, E. and Kohavi, R. (1999).
An empirical comparison of voting classification algorithms: bagging, boosting
and variants.
MAchine learning, 36:105–142.

Breiman, L. (1994).
Bagging predictors.
Technical report 421, Department of Statistics, University of California, Berkeley.

Dietterich, T. G. (1999).
An experimental comaprison of three methods for constructing ensembles of
decision trees: bagging, boosting and randomization.
Machine learning, pages 1–22.

Dietterich, T. G. (2000).
Ensemble methods in machine learning.
In Roli, F., editor, First International Workshop on Multiple Classifier Systems,
Lecture Notes in Computer Science, New York. Springer Verlag.

Freund, Y. and Schapire, R. E. (1997).
A decision-theoretic generalization of on-line learning and an application to
boosting.
Jounal of computer and system sciences, 55(1):119–139.

Friedman, J., Hastie, T., and Tibshani, R. (1999).
Additive logistic regression: a statistical view of boosting.
In Advances in Neural Information Processing systems (NIPS), number 11. MIT
Press.
(see also technical report at http://www-stat.stanford.edu/ jhf/.

Mason, L., Baxter, J., Bartlett, P., and Frean, M. (1999).
Boosting algorithms as gradient descent in function space.
Technical report RSISE, Australian national university.

Mason, L., Baxter, J., Bartlett, P., and Frean, M. (2000).
Boosting algorithms as gradient descent.
In Advances in Neural Information Processing systems (NIPS), number 12. MIT
Press.
(to appear).

Schapire, R. E., Freund, Y., Bartlett, P. L., and Lee, W. S. (1998).
Boosting the margin: a new explanation for the effectiveness of voting methods.
Annals of statistics, 26(5):1651–1686.

Schapire, R. E. and Singer, Y. (1998).
Improved boosting algorithms using confidence-rated predictions.
In Proceedings of the Eleventh Annual conference on computational learning
theory (COLT), pages 80–91.

	Boosting as descent in function space
	Boosted predictors are additive models
	AdaBoost is steepest descent on training set
	A statistical view of boosting

	More surrogate losses, more boosting algorithms
	Why the e-yf loss? other surrogate losses

	Practical remarks and theoretical results
	Practicalities
	Theoretical results

	Extensions of boosting
	Boosting for multiclass and ranking
	[Multiplicative updates algorithms]

