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Problem 1 — Basis function predictors

Let B = {b(,£), £ € E} be a finite or infinite dictionary and define a class of
predictors F follows F C {f(x) = zlj\il Bib(x; &), &1.m € 2,81 € R}, We
say that F is a basis function predictor.

Show that each of the predictor classes below can be represented as a basis
function classifier by finding a suitable dictionary and explaining what the co-
efficients [3; should be. For each classifier below, answer if F contains all the
possible M-terms linear combinations over the dictionary B or a strict subset
of them.

Regression trees with 1 level
Regression trees with any fixed number of levels [

2 layer neural networks with linear outputs [Optional]

- W o=

Naive Bayes classifiers for binary classification, where Py, = N (1, 0]2)

Problem 2 — How is the K-nearest neighbor classifier affected by sam-
pling noise?

Assume that we have a binary classification problem where x € R? and Pyy =
Py Pxjy, Py(+1) = 0.5, PXJZY:il = Normal(p+, I3) with Iy the unit matrix
of order 2 and py = [£1.6 0]

In this problem we will study by simulation how the decisions of the K-NN
classifier fluctuate when the training set is resampled. Repeat questions a, b,
c,d for K =1,3,7,11,15,19,...40 and optionally for other values of K.

a. Generate simulation data (you aren’t required to show anything for this
question, nor for b,c,d)

1. Sample a test set D of size N = 1000 or larger from Pxy
2. Implement the K-NN classifier.
Repeat for b =1 to B with B > 30



(a) Sample a data set Dy of size N = 100 from Pxy

(b) Denote by f, the K-NN classifier based on Dy. Calculate g = f(3)
for 2 € D (The predictions of fy on test sample).

(c) Caleulate Iy = % >".cp, Ligiv i for (z%,y%) € Dy. (How well does f,
fit the training set)

(d) Calculate Ly the (estimated) expected loss of fp

Lb = L(fb) = = Z l[fb(:‘v‘i)¢gi] (1)

(z',51)€D

b. Calculate the average and variance of the expected losses; denote L =average(Ly).
This is a Monte Carlo estimate of the expected loss of the K-NN on this problem,
when the sample size is N = 100.

c. For each point ¢ in the test set, calculate

p = Sl 0f2 .

This is the (empirical) probability that point #* is labeled +.

Then calculate the (empirical) variance of the labeling of 4, i.e. the averaged
variance of f(7%).

|
V= ﬁ;pi(l—pi) (3)

d. Calculate [ the mean of Ij.

e. Show how the above statistics depend on K. For the values of K you used,
plot L, [,V versus K on the same graph. For L and [ also show error bars equal
to stdev(Ly), stdev(ly) respectively.

f. Interpret the graphs in e.. Which graphs informs about the variance of f, the
K-NN classfier? What does it show about the influence of K on the classifier
variance?

g. Which graph informs about the bias of f, the K-NN classfier? What does it
show about the influence of K on the classifier bias?

j- Give a formula or algorithm for calculating/estimating the Bayes error L* for
this problem. Assume that you have all the information in the first paragraph,
and a computer to run simulations.



Calculate the actual value of L* using your method. (Optionally, plot it as a
horizontal line on the graph in question e..)

Problem 3 — Classifiers in 1 dimension

This homework will make use of the (one-dimensional) data set D contained in
the file hw2-1d-train.dat. The file contains one example x y per row, like this
-2.028238 -1

-4.819767 -1

-4.081050 -1

... Use this data set to answer the questions below.

For this problem and in general: if a result is already in the lecture notes you
can use it as is. No need to derive it again. In particular in b below, specialize
the formula from Lecture 1 to this case. In a, only numerical results required.

a. Assume the distributions gi(x) = Px|y—+1(z) are normal distributions
N(py,1). Estimate py and p = P(Y = 1) from the data.

b. Estimating a generative classifier (LDA) Denote by f,(«) the LDA
classifier for this problem. Write f, in the form below

+1 ifz > 6,
folz) = -1 ifz <6, , (4)
0 ife =46,

find the expression of 6, as a function of u+,p and evaluate its numerical value
from the estimates you obtained in a.

c. Estimating a Linear classifier Show that for £ € R any linear classifier
is of the form

fr(z) = sgn(sx —0r) (5)
with s = &1 and 07, € R.

Plot the value of the empirical classification error f01 on D as a function of 8y,
for s = 1.

Then find the s and the 6, that minimize the Z01 on the data set D.

d. The Bayes loss The data were generated from two normal distributions
with means py =2, u_ = —1.2 and p = 1/3. Use this true data distribution to
answer the following questions.

Calculate P(Y = 1|z) as a function of z and the true p, pu—, p. You know from
Lecture 1 that P(Y = 1|z) has the form 1/(1 + e**~?). Find the numerical
values of a and b.



Then, write the expression of the Bayes loss L§; for this problem, and compute
its value by numerical integration.

[ e. Optional but helpful as a sanity check] Make a plot of pg(x) and
(1 — p)g—(z) on the same graph. Mark also the locations of uy,0,,60r,60," on
the graph.

[f. Optional-extra credit: Linear classification with outliers] Now “add”
the outlier (100,41) to the original data set. Recalculate 6, and 67, with the
new data. No derivations for this part, just numerical results OK.

Compare with the values in b, ¢ and explain what you observe.
Problem 4 — Kernel regression and its bias

In this problem, the true function is f(z) = 2% + 1, and the sampling density is
fx is the mixture §Normal(0,0.3%) + %Normal(l, 0.6%), supported on [—1,1].
The parameter a needs to be chosen so that this density integrates to 1; the

value of « is close to 1.

The file hw2_kr.dat contains N = 300 samples from this density; denote D =
{(2%,y" = f(2*), i =1: N}. This problem examines the theoretical and empir-
ical properties of the Nadaraya-Watson regressor with Gaussian kernel (b(z) is
a standard normal) and kernel width h = 0.1.

a. Calculate the value of the parameter a.

b. Calculate the values of §(x) the kernel regressor and plot f(z) on [—1,1] and
g(x) on [—1.5,1.5] on the same graph.

c. Bias of §j. Calculate and plot on the same graph, for z € [—1, 1] the following:
the bias § — f and the theoretical bias from Lecture Notes II.1, equation (8),
ignoring the vanishing terms.

d. Plotting the first and second order bias terms for fixed data D from (7).
First, plot the data density, and the x-dependent components of the bias, namely
Ai(z) = Zf\il wi(z* — 2) and Ay(x) = Zf\il w;(z* — 2)? on the same graph,
z€[~1.5,15.

e. On the next graph, plot f’, f” on x € [-1.5,1.5].

f. Now finally plot the first and second order bias terms of (7), denote them
b1, be(z) on a third plot, as well as their sum (which is the total bias estimated

1y, is 04 computed using the true parameters.



by (7)) and the true § — f. Let the z axis be [—1.5,1.5] but plot § — f only on
[—1,1]. It is most illustrative if the graphs in d, e, f have the x axes aligned.

g. Is there a border effect at * = +17 Explain why or why not. Is there a
border effect at x = —17 Explain why or why not.

h. Explain the bias observed at z = 0.



