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Problem 1 – Logit loss Hessian
Assume that you have a data set D = {(xi, yi), i = 1 : N}, xi, w ∈ Rn.

a. Calculate the expression of ∇2Llogit for a single data point x. Simplify your result using φ(ywTx)
conveniently.

[b.– Not graded. Show that the gradient of Llogit(w;D) is a linear combination of the xi vectors.
This was shown in the lecture.

c. Show that if N < n the Hessian of Llogit(w;D) has at least one 0 eigenvalue, or equivalently
that it is not full rank, and conclude that Llogit(w;D) is not strongly convex in this case.

d. – Optional, extra credit If ||xi|| ≤ R, find a constantM sufficiently large so that∇2Llogit(w;D) ≺
MIn.

A reminder that you are allowed and even encouraged to use results from previous homeworks,
course notes, lectures withouth proof.

Problem 2 – Regularization is monotonic w.r.t. λ
Let Jλ(w) = L̂h(w) + λ

2 ||w||
2 be a regularized objective functions, where w are the parameters. For

example, the linear support vector formulation from Lecture IV, f(x) = wTx. Let λ1 > λ2 > 0 and
denote w1,2 = argminwJλ1,2 the optimal solutions for λ1, respectively λ2, and assume further that
Jλ1,2

have unique global minima.

a. Prove that ||w1|| < ||w2|| whenever w1,2 6= 0.

b. Prove also that L̂h(w1) > L̂h(w2).

In other words, imposing more regularization reduces the regularized quantity ||w||, and increases
the un-regularized one (i.e., the loss).

Problem 3 – Descent algorithms for training a neural network
This problem asks you to train a neural network to classify the data sets given on the Assignments
web page. The inputs are 2-dimensional, outputs are ±1, one data point/line. Submit the code for
this problem.

Objective to minimize is ˆLlogit(β,W ) = − 1
N log-likelihood(D|β,W ) and β ∈ Rm+1,W ∈ Rn×m are

the neural net parameters.

Choose a number m = 3 to 5 hidden units (suggested) or go as high as you want (recommended to
try both).

Algorithms: steepest descent with fixed step size. You need to implement the algorithm yourself.
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[Optional, for extra credit: implement Newton, or run Newton, LBFGS quasi Newton from library
code.]

Dataset D given hw4-nn-train-100.dat

a. Explain how you chose the initial points. It’s ok to plot the data and look at it or even to make
a sketch of the solution you want to find. (If you implement more than one algorithm, start them
all from the same initial point.)

The training algorithm will converge to a local optimum. It’s OK to look at this local optimum
and try other initial points if the found optimum is bad. (Don’t forget to use the same initial point
for all algos in the results you present in the homework.) It’s also recommended to challenge the
algorithm by giving it random/uninformative initial points. Do not start all the parameters at 0
[Why?].

Chose the stopping criterion 1− l̂k+1

l̂k
≤ tol with tol = 10−4. If this tolerance cannot be reached in

a reasonable number of steps, set a higher tol and report that value.

b. The choices above should be kept the same for all estimation algorithms (except maybe SG). De-
scribe briefly the implementation details of your algorithms. Size of the fixed step, if you bracketed
the min or not in line search, what line search method you used (you can use code from other sources
to bracket the mininmum, and you can implement another line search method than Armijo.), how
you chose C in the stochastic gradient algorithm (trial and error OK) and what value you used,
etc. For each algorithm, give the number of iterations (and if it converged or not) and final value
of loss function. Record also the time each algorithm takes and report it.

Estimate the value of Llogit, L01 by averaging them on the test set hw4-nn-test.dat for the final
classifier obtained. Optionally, compute these values at each iteration and plot them in the graphs
for c.

c. Plot the values of ˆLlogit, L̂01 and the respective costs on the test set vs the iteration number k.
Make two separate plots for the two costs. If you have computed the test set costs at each iteration,
plot these too on the respective graphs.

d. Plot the final decision region superimposed on the data.

[e. Optional but encouraged] Plot (some of) the β parameters vs k; on a separate plot, show
trajectories of β parameters coming from different initializations.

Please make clear, well-scaled, well labeled graphs.

f. Repeat steps b,c,d,[e] for the larger data set hw4-nn-train-10000.dat on the same models as
before. Use the same parameter initialization as in the previous case to get meaningful comparisons.

Do not plot the data set for this part of the problem.

[Optional, extra credit: repeat the training initializing from the final values obtained in the small
sample run. Plot what you think is meaningful to compare performances.]

g. Discuss the differences that you observe between the algorithms’ behavior on the large and small
samples.
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Problem 4 – Ridge regression
In this problem you will perform ridge regression on the function f∗(x) = x2 + 1 on [0, 1]. In the
file hw3 rr.dat you will find a set of N (xi, yi) values with yi = f∗(xi).

a. Let f(x) = β0 + β1x be the predictor of y; β0, β1 will be estimated by Ridge Regression with
regularization parameter λ. Denote β0,1(λ) the result of this estimation. Let the data matrix be
the row vector X = [x1 . . . xN ], and define the column vector y = [y1 . . . yN ]T

Write the expressions of β0(λ), β1(λ) as functions of X, y, λ.

b. Now choose a set of λ values including 0 and N. Calculate β0,1(λ), l̂LS(λ) and J(λ). Plot on the
same graph β0,1(λ) vs λ.

c. Plot on the same graph l̂LS(λ) and J(λ) vs λ. Comment on what you observe in the graphs of
b, c.
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