Let $\hat{L}_w(f) = \sum_{i=1}^N w_i L(y_i, f(x^i))$ weighted loss

Algorithm ADABOOST

Assume \mathcal{B} contains functions b taking values in [-1, 1] or $\{\pm 1\}$ Input M, labeled training set \mathcal{D} Initialize f = 0 $w_i^1 = \frac{1}{N}$ weight of datapoint x_i for $k = 1, 2, \dots M$ 1. "learn classifier b^k for \mathcal{D} with weights $w^{k,n}$ $b^k = \operatorname{argmin}_{\mathcal{B}} \hat{L}_{w^k}(b)$ 2. compute error $\varepsilon^k = \sum_{i=1}^N w_i^k \frac{1-y_i b^k(x_i)}{2}$ 3. set $\beta^k = \frac{1}{2} \ln \frac{1-\varepsilon^k}{\varepsilon^k}$ 4. compute new weights $w_i^{k+1} = \frac{1}{Z^k} w_i^k e^{-\beta^k y_i b^k(x_i)}$ where Z^k is the normalization constant that makes $\sum_i w_i^{k+1} = 1$ Output $f(x) = \sum_{k=1}^M \beta^k b^k(x)$