$f^{-k}(x) = \sum_{l \neq k} \beta^l b^l(x)$

Algorithm BACKFITTING Input M, labeled training set \mathcal{D} Initialize $b^{1:M} = 0, \beta^{1:M} = 0$ repeat for k = 1, 2, ... M

fr k = 1, 2, ..., Mcalculate $r^k(x^i) = y^i - f^{-k}(x^i), i = 1 : N$ fit k-th predictor $\beta^k, b^k = \operatorname{argmin} \hat{L}(f^{-k} + \beta b)$

until change in \hat{L} small enough (or, change in $b^{1:M}$ small enough) **Output** $f(x) = \sum_{k=1}^{M} \beta^k b^k(x)$