Algorithm Steepest-Descent for Logistic Regression

Input $\beta^0 \in \mathbb{R}^n$ initial point

For k = 0, 1, ...

- 1. calculate $d^k = \frac{1}{N} \sum_{i=1}^{N} \left(y_*^i \frac{1}{1 + e^{f(x^i)}} \right) x^i$
- 2. find η^k by line minimization

$$3. \ \beta^{k+1} \to \beta^k - \eta^k d^k$$

until stopping condition satisfied

Output β^{k+1}