Lecture Notes II. 1 - Bias and variance in Kernel Regression

Marina Meilă
mmp@stat. washington.edu

Department of Statistics
University of Washington

October, 2020

An elementary analysis

Bias, Variance and h for $x \in \mathbb{R}$

Kernel regression by Nadaraya-Watson

$$
\begin{equation*}
\hat{y}(x)=\frac{\sum_{i=1}^{N} b\left(\frac{\left\|x-x^{i}\right\|}{h}\right) y^{i}}{\sum_{i=1}^{N} b\left(\frac{\left\|x-x^{i}\right\|}{h}\right)} \tag{1}
\end{equation*}
$$

Let $w_{i}=\frac{b\left(\frac{\left\|x-x^{i}\right\|}{h}\right)}{\sum_{i^{\prime}=1}^{N} b\left(\frac{\left\|x-x^{i^{\prime}}\right\|}{h}\right)}$.

Assumptions

A0 For simplicity, in this analysis we assume $x \in \mathbb{R}$.
A1 There is a true smooth ${ }^{1}$ function $f(x)$ so that

$$
\begin{equation*}
y=f(x)+\varepsilon \tag{2}
\end{equation*}
$$

where ε is sampled independently for each x from a distribution P_{ε}, with $E_{P_{\varepsilon}}[\varepsilon]=0$,

$$
\operatorname{Var}_{P_{\varepsilon}}(\varepsilon)=\sigma^{2}
$$

A2 The kernel $b(z)$ is smooth, $\int_{\mathbb{R}} b(z) d z=1, \int_{\mathbb{R}} z b(z)=0$, and we denote $\sigma_{b}^{2}=\int_{\mathbb{R}} z^{2} b(z) d z, \gamma_{b}^{2}=\int_{\mathbb{R}} b^{2}(z) d z$.
In this first analysis, we consider that the values $x, x^{1: N}$ are fixed; hence, the randomness is only in $\varepsilon^{1: N}$.

[^0]
Expectation of $\hat{y}(x)$ - a simple analysis

Expanding f in Taylor series around x we obtain

$$
\begin{equation*}
f\left(x^{i}\right)=f(x)+f^{\prime}(x)\left(x^{i}-x\right)+\frac{f^{\prime \prime}(x)}{2}\left(x^{i}-x\right)^{2}+o\left(\left(x^{i}-x\right)^{2}\right) \tag{3}
\end{equation*}
$$

We also have

$$
\begin{equation*}
y^{i}=f\left(x^{i}\right)+\varepsilon^{i} \tag{4}
\end{equation*}
$$

We now write the expectation of $\hat{y}(x)$ from (1), replacing in it y^{i} and $f\left(x^{i}\right)$ as above. What we would like to happen is that this expectation equals $f(x)$. Let us see if this is the case.

$$
\begin{align*}
& E_{P_{\varepsilon}^{N}}[\hat{y}(x)]=E_{P_{\varepsilon}^{N}}\left[\sum_{i=1}^{N} w_{i} y^{i}\right]=E_{P_{\varepsilon}^{N}}\left[\sum_{i=1}^{N} w_{i}\left(f\left(x^{i}\right)+\varepsilon^{i}\right)\right] \tag{5}\\
& =\sum_{i=1}^{N} w_{i} f(x)+\sum_{i=1}^{N} w_{i} f^{\prime}(x)\left(x^{i}-x\right)+\sum_{i=1}^{N} w_{i} \frac{f^{\prime \prime}(x)}{2}\left(x^{i}-x\right)^{2}+\underbrace{E_{P_{\varepsilon}^{N}}\left[\sum_{i=1}^{N} w_{i} \varepsilon^{i}\right]}_{\text {bias }} \tag{6}\\
& =f(x)+\underbrace{f^{\prime}(x) \sum_{i=1}^{N} w_{i}\left(x^{i}-x\right)+\frac{f^{\prime \prime}(x)}{2} \sum_{i=1}^{N} w_{i}\left(x^{i}-x\right)^{2}}_{=0]} \tag{7}
\end{align*}
$$

In the above, the expressions in red depend of f, those in blue depend on x and $x^{1: N}$.

Qualitative analysis of the bias terms

The first order term $f^{\prime}(x) \sum_{i=1}^{N} w_{i}\left(x^{i}-x\right)$ is responsible for border effects. The second order term smooths out sharp peaks and valleys.

Bias, Variance and h for $x \in \mathbb{R}$
2
The bias of \hat{y} at x is defined as $E_{P_{X}^{N}} E_{P_{\varepsilon}^{N}}[\hat{y}(x)-f(x)]$.

$$
\begin{equation*}
E_{P_{X}^{N}} E_{P_{\varepsilon}^{N}}[\hat{y}(x)-f(x)]=h^{2} \sigma_{b}^{2}\left(\frac{f^{\prime}(x) p_{X}^{\prime}(x)}{p_{X}(x)}+\frac{f^{\prime \prime}(x)}{2}\right)+o\left(h^{2}\right) \tag{8}
\end{equation*}
$$

The variance \hat{y} at x is defined as $\operatorname{Var}_{P_{X}^{N}} P_{\varepsilon}^{N}(\hat{y}(x))$.

$$
\begin{equation*}
\operatorname{Var}_{P_{X}^{N}} P_{\varepsilon}^{N}(\hat{y}(x))=\frac{\gamma^{2}}{N h} \sigma^{2}+o\left(\frac{1}{N h}\right) . \tag{9}
\end{equation*}
$$

The MSE (Mean Squared Error) is defined as $E_{P_{X}^{N}} E_{P_{\varepsilon}^{N}}\left[(\hat{y}(x)-f(x))^{2}\right]$, which equals

$$
\begin{equation*}
\operatorname{MSE}(x)=\text { bias }^{2}+\text { variance }^{2}=h^{4} \sigma_{b}^{4}\left(\frac{f^{\prime}(x) p_{X}^{\prime}(x)}{p_{X}(x)}+\frac{f^{\prime \prime}(x)}{2}\right)+\frac{\gamma_{b}^{2}}{N h} \sigma^{2}+\ldots \tag{10}
\end{equation*}
$$

Optimal selection of h

If the MSE is integrated over \mathbb{R} we obtain the $\operatorname{MISE}=\int_{\mathbb{R}} M S E(x) d x$.
The kernel width h can be chosen to minimize the MISE, for fixed f, p_{X} and b. We set to 0 the partial derivative

$$
\begin{equation*}
\frac{\partial M I S E}{\partial h}=h^{3}(\square)-\frac{(\square)}{N h^{2}}=0 \tag{11}
\end{equation*}
$$

It follows that $h^{5} \propto \frac{1}{n}$, or

$$
\begin{equation*}
h \propto \frac{1}{N^{1 / 5}} \tag{12}
\end{equation*}
$$

In n dimensions, the optimal h depends on the sample size N as

$$
\begin{equation*}
h \propto \frac{1}{N^{1 /(n+4)}} \tag{13}
\end{equation*}
$$

[^0]: ${ }^{1}$ with continuous derivatives up to order 2

