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1 What is an ERGM?

Let G = (V, E) be an undirected graph, with |V| = n nodes and edge set E = {ij, i #
j} €V xV. A random graph model is a distribution P(E|V) defined for all finite
sets of nodes V. An equivalent way to define a random graph over V is to associate
an indicator variable Y;; to each pair of nodes, and then write P as a the distribution
of Y|V and some parameters ¢. In this context, an Exponential Random Graph
Model (ERGM) is an exponential family model for Yn = [Yij]i<i<j<n-

Py(Yn) = exp (07tn(Yn) — N (6)) (1)

In the above N = n(n—1)/2 the dimension of Y and ¢y is a vector of sufficient statistics
computed from Y. Note that the dependence of V is implicit, through the dependence
of N on n. Definition (1) can be generalized by:

1. Allowing for directed graphs, or restricting the possible edges; N will take a value
equal to the dimension of Y in each case.

2. Considering that nodes can have features X;, ¢ = 1 : n which can influence the
probabilities of the edges. In this more general case we define

Py(Yn|X1:m) = exp (0Ttn(Yn|X1m) — ¥n (0, X1m)) (2)

Example 1 (The Erdés-Renyi (ER) model) For this model, ty =) y;; and there
s a single parameter 0 € R. Thus,

Py(yn) o e X¥is = H O )
ij

In this model, each edge is sampled iid from a Bernoulli with natural parameter 8. The
most probable graph is the complete graph if 6 > 0 and the empty graph if 8 < 0.

Example 2 (The Stochastic Block-Model (SBM)) The assumption is that the nodes
in V' are partitioned into K clusters; X; € {1 : K} denotes the cluster that i belongs to.
We have K(K + 1)/2 sufficient statistics, defined as

tu(y,z) = > Yij (4)

zi=k,xj=l or z;=l,x;=k

Hence, an edge is sampled independently with a probability that dependins on where
its endpoints lie. Note that for known X, the normalization constant for the SBM is
tractable.



The ER and the SBM are called diadic models, which means that edges are sampled
independently conditioned on the features of their endpoints. SBM’s have been intensely
studied and used in the context of social networks. However, it is generally observed
that diadic models, even with richer and more refined node features, do not fit well the
real world social-networks. In particular, individuals who have a friend in common tend
to be themselves friends with higher probability than a diadic model can predict. In
other words, features like triangles and stars have higher frequency in real networks than
the frequencies predicted by independent sampling of edges.

This prompted the development of “proper” ERGMs. These are exponential models
where the sufficient statistics count other “interesting” features, like triangles, nodes of
degree k = 2,3,4..., 4 and 5 cliques, in addition to edges.

Example 3 (ERGM with star and triangle features) Let t; n count the number
of edges, ta N the number of triangles, t3 n the number of 3-stars (nodes of degree 3),
ta N the number of 4-stars, etc. There is a parameter 0y for each statistic t n; when
0r > 0 the model favors the graphs which contain more of feature k, and when 6 < 0
then graphs containing fewer of this feature will be more probable.

PQ(:UN) — 661#edges+02#triangles+€3#3-stars+...7wN(91,02,...) (5)
Note that these statistics will be dependent on each other, in ways that are fairly complex.
Not surprisingly, these models are harder to understand, and this is reflected quantita-
tively in the fact that the normalization constant Z is generally intractable.

2 Paradigms in modeling with ERGMs

Parameter estimation A first remark on ERGMs is that while the number of param-
eters p is fixed, even a single sample from Py contains N (dependent or independent)
random variables y;;. Thus, estimating 6 can be done from a single graph, or from
a small set of observed graphs. A second feature of ERGMs is that, whenever the Y
variables are dependent (for example in a proper ERGM like in Example 3) one would
have to estimate the parameters from non-iid data. Sometimes the Y variables are de-
pendent because the node features X, which we assumed are known, are not. This is
the case for the SBM. While the model specified by (4) is simple and tractable when
the cluster assignments are known, in practice these are not observed, and they have to
be estimated simultaneusly with 6, using other, observed, node features and the graph
connectivity Y.

Here for simplicity we will only consider ML estimation of ERGMS, but in practice,
MAP estimation and full Bayesian estimation of these models (and especially of SBM
type models) are widely used, and efficiently implemented for fairly large networks.

Computational issues For most proper ERGMS, v is not computable in closed form or
tractably. This means that sampling from Py and exact inferences under these models are
also generally intractable. For example, the simple marginal probability Py(Y;; = 1|n)
is intractable in model (5). Thus, Monte Carlo methods for parameter estimation,
sampling and other inference tasks (e.g.link prediction) have been developed, and are
available in packages like statnet [Handcock et al., 2008].



Model interpretation What is the ultimate aim of a model? One possible aim is pre-
diction: if this network doubles in size (i.e n — 2n, what will be its expected properties:
number of triangles, diameter, expected degree of a node, number of edges?

Another question is testing: for a new network, we want to know if it was generated
from a given model, or in which model class it fits best. Given two networks (usually
over different sets of nodes and with different number of nodes), were they generated by
the same process?

A third kind of question that a model can answer for us is interpretation of the param-
eters. Implicit under parameter interpretation is parameter consistency, i.e the assump-
tion that large nets and small nets from the same “source” (e.g. collaboration nets in
statistics, needle sharing nets among drug users) have the same parameters, with the
parameter estimates concentrating around the “true” parameters # € RP as the network
sizes grow larger. Unfortunately, research over the last decade has shown that not all
ERGMs are consistent.

3 Instability and inconsistency phenomena in ERGMs

3.1 Instability and its consequences

Assume w.l.o.g. that t,, € {0,...Tn} Ezercise: Why w.l.o.g ?. For example the number
of edges t1 < N = n(n — 1)/2, the number of triangles to < n(n — 1)(n — 2)/6, the
number of 3-stars t3 < n(n —1)(n — 2)(n — 3)/24.

A sufficient statistic ¢y is called stable iff TWN is bounded as N — oo; otherwise %, is
unstable. For example, the number of edges is stable, while the number of triangles is
unstable.

Theorem 1 (After [Schweinberger, 2011]) Assume Py is a single parameter model
with sufficient statistic t unstable.

1. We write yn ~ yp if the two random graphs represented by yn,y differ in the

value of a single Y;j. Then MAXy ~yh ﬁzgm tends to infinity when N — oo. In
other words, Py is sensitive to small changes in Y .

2. The probability distribution Py concentrates on extreme values of the sufficient
statistic, i.e. for any 0 and any € € (0,1), Pyltn(Y) > (1 —€)In] — 1, if 6 > 0,
or Pyltn(Y) < €Tn] — 1, if 6 <0, when N — cc.

In the case of multi-dimensional 8, the current results are not so simple, but they are
qualitatively similar.
Instability has negative consequences, known in the field of network modeling as (model)
degeneracy. In particular,

e MCMC methods for estimation or sampling will not mix well.

e Since the probability mass of Py almost always concentrates on the full or the
empty graph, while real networks are usually close to neither (even though they



are sparse), it follows that the estimates of 6 will be approximatively 0 for any
network that is not very small. (This was demonstrated examples of n = 32 and
n = 36 in [Schweinberger, 2011] and respectively [Fienberg et al., 2009].)

e Unless the estimated parameter 6 is very close to 0, sampling for the estimated
model p; will produce graphs that do not ressemble the data (because they will
be almost complete or almost empty).

e Hence the model’s predictions (of average degree, expected diameter, etc) will not
be correct.

Empirical evidence for degeneracy in real world scenarios has accumulated over the last
decade. It has been shown that degeneracy in network modeling can be explained/characterized
by means of convex geometry and the marginal polytope of the ERGM; [Handcock, 2003]

is one of the first papers that studies it theoretically from the point of view of exponen-

tial family models. The more recent paper [Fienberg et al., 2009] expands this with a

more refined geometric view, complete with vivid illustrations.

3.2 (In)consistency of ERGMs

While the theorem above does not directly prove inconsistency of instable models, it
gives very strong hints that this may occur. The characterization of consistency is
solved directly in [Shalizi and Rinaldo, 2013]! which pose the problem from the point
of view of projectivity of a model. Essentially, we cannot talk about consistency of a
parameter, in the context of dependent data, without assuming that the same parameters
can describe both a large amount of data (e.g a large network) and a subset of it (e.g a
smaller network). To have consistency, we must have projective exponential family.

The main result of [Shalizi and Rinaldo, 2013] is that projectivity can be characterized
by what they call volume factors. In brief, denote by Ty (yn) = {¥ t(¥n) = t(yn)}
the type of yu, i.e. the equivalence class of all other graphs that have the same sufficient
statistics as yn. If tx(yn) = t then Ty(yn) = Tn(t). The volume factor vy(yn) =
|7Tn (yw)] is the size of this set. It turns out that the way the volume factors grow when
yn is a subset of a larger network yr4 v is essential for projectivity, and therefore for
consistency. To go with [Shalizi and Rinaldo, 2013] we call the smaller node set A and
the larger node set B, and therefore our previous notation becomes va(yn) = |Tn (yn)|,
while for the larger network the same quantity is vp(ya4+n). Denote y4 = yn and
yB = Ym+nN,; and yp\a = ym+n \ Y4 (hope it makes sense).

Now let ta(yn) = ¢, t(yn+m) = t + 9 (assuming that ¢ counts some features, like
triangles, so the count can only grow if the network has more nodes).  Define the
conditional volume factor vp\44(ya,d) = |{y93\A so that ' 4 = ya,typ) =t + d}|;
in other words, vp\ a4 is the number of all networks equivalent to B whose restriction
to A is identical to y4.

Definition 1 The sufficient statistic t has separable increments iff for all set of
nodes B, for all A C B, and for all networks ya, the range of possible increments
0 =tp(yp) —ta(ya) is the same, and the conditional volume factor does not depend on
Ya, i.e. vp\ala(0,y4) depends only on 4.

'Note: this is not so long ago!



Theorem 2 ([Shalizi and Rinaldo, 2013]) The exponential family Py is projective
iff the sufficient statistics have separable increments.

For example, when a set of nodes A, with a network y4 on them, is increased with B\ A,
the number of edges in examples 1, and 2, will increase by amounts that depend only
on properties of A and B, but not on what edges appear in y4. However, the number of
triangles in B \ A will depend on the configuration of edges in y4, and in particular on
the number of triangles in y4. Hence, diadic models are projective, but ERGMs (that
count triangles and stars) are not.
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