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1 Cross-Validation

The idea of cross-validation is to “test” a trained model on “fresh” data,
data that has not been used to construct the model. Of course, we need
to have access to such data, or to set aside some data before building the
model. This data set is called validation data or hold out data (or sometimes
test data, in contrast to the data used to build the model which is called
training data.

We will “validate” the model on the holdout data. If the model is accurate, it
must be able to predict well unseen data coming from the same distribution.
The loss of our trained predictor on the test data

LCV (f) =
1

|D′|
∑
x∈D′

L(y, f(x)) (1)

is a measure of the goodness of our predictor. If we have fitten several pre-
dictors f1:m to a training set D, we compare the quality of their predictions
on D′, and we choose

f∗ = argmin
1:m

LCV (f j) (2)

as the “best” predictor.

The size of the validation set Dtest. If the validation set is too small,
then the value of LCV will have high variance (i.e will change much if we
pick another validation set out of the original data set). So, our decision
based on it will be prone to error. But if N ′ = |D′| is large, then we may be
left with too little data for building the model. To balance the two, consider
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that D′ will be used for estimating only one number, its loss, for each f j ,
while D will be used to estimate all the parameters of f j . Hence, the rule of
thumb when sufficient data is available is to choose a set of N ′ = 200 . . . 1000
samples for validation, and to use the remaining ones for training.

For smaller data sets, a procedure called K-fold cross validation is used.
The whole data is divided at random into equal sized sets D1, . . .DK . Then,
for k = 1 . . .K, Dk is used as a validation set, while the rest of the data is
used as training set. The loss Lk(f

j) of Dk for the j-th model (trained on
the remaining data) is calculated. The final score for each f j is equal to the
arithmetic mean of Lk(f j), k = 1 . . .K. In practice, the values of K range
from 5–10 to N = |D|. If K = N the method is called leave-one-out cross
validation.

K-fold CV is computationally expensive, and costs grow (approximately)
linearly with K.

2 AIC and BIC

Assume that the loss function is based on a likelihood (i.e. for predictors f
associated with a probabilistic model), i.e. L(y, f(x)) = − lnP (y|x, f), and
that f is fit by Maximum Likelihood (i.e. by minimizing L̂. Then, we have
we have two criteria for model selection that use the data only through L̂.

Akaike’s Information Criterion (AIC) is defined as

AIC(f) = −NL̂(f)− d, (3)

where d = #parameters(f). We select the model f for which

AIC(f) = max
j=1:m

AIC(f j) (4)

Thus, AIC penalizes likelihood on the training set with the number of pa-
rameters used to achieve this fit.

The Bayesian Information Criterion (BIC) is applies in similar con-
ditions to AIC.

BIC(f) = −NL̂(f)− d

2
lnN, (5)

with d = #parameters(f) and N = the sample size of the D used to fit f .
As with AIC, the predictor (model) with the maximum BIC is selected as
“best”.
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Remark: AIC and BIC are used in a more general framework than predic-
tion, namely where a log-likelihood is maximized to obtain a parametrized
model1.

It is obvious that for all but the very smallest sample sizes N , BIC will
penalize a model more than AIC, therefore AIC will choose models with
more (or the same number of) parameters than BIC. Why this difference?
The difference comes from the principles that are at the basis of AIC and
BIC. The former is an (asymptotic) estimator of the expected loss of a model
(and asymptotically will behave the same as leave-one-out CV), whereas the
latter is an (asymptotic) estimator of the marginal likelihood of a model given
the data.

Specifically, for a model family F = {fθ, θ ∈ Θ ⊆ Rd}, BIC approximates
P (F|D) =

∫
Θ Prior(f)

∏
(x,y)∈D P (y|x, fθ)dθ.

Hence, AIC selects the models that predicts best, while BIC selects the
model that is the best explanation of the data. On finite samples, these two
are often not the same.

3 Structural Risk Minimization

3.1 VC dimension and model complexity

Model complexity, even for a parametric model, is not always the same as
the number of free parameters in the model. Model complexity is a task
dependent measure. For classification, an important measure of complexity
is the Vapnik-Chervonenkis (VC) dimension of a model class F .

Definition 1 We say that model class F shatters a set of points Dh =
{x1, . . . xh} iff, for every possible labeling y1:h ∈ {±1} of Dh, there is a
function f ∈ F that achieves that labeling, i.e. sign f(xi) = yi for all i = 1 :
m.

Definition 2 A model class F over Rn has VC dimension h iff h is the
maximum positive integer so that there exists a set of h points in Rn that is

1The model must satisfy certain regularity conditions. A remarkable case where BIC
does not apply is the case of statistical models with latent (unobserved) variables; in this
case the BIC can over-penalize the model.
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shattered by F .

The VC-dimension is always an integer, but its value for a model class F can
rarely be calculated or estimated. (E.g. we don’t know the VC dimension
of neural networks.)

Example 1 The family of linear classifiers F = {f(x) = wTx + b, x, w ∈
Rn, b ∈ R} has V Cdim equal to n+ 1.

3.2 Structural risk minimization (SRM)

The importance of the VC-dimension comes from theorems such as this one.

Theorem 1 Let F be a model class of VC-dimension h and f a classifier
in F . Then, with probability w.p. > 1− δ over training sets

L01(f) ≤ L̂01(f) +

√
h[1 + log(2N/h)] + log(4/δ)

N
. (6)

In other words, for a small VC-dimension, the empirical loss L̂01(f) is a good
predictor of the true loss L01(f). The figure below displays graphically the
last term from equation (6) for values of δ = 0.1, . . . 0.0001.
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Like AIC and BIC, equation (6) balances L̂ with a penalty that depends on
the model complexity and N . But, unlike AIC, or BIC, this bound applies
to any f , not just an f obtained by Max Likelihood. Moreover, (6) is a
finite sample (i.e. not asymptotic) result, it holds for any value of N .

Theorem 2 Let F be a model class of VC-dimension h, with f(x) ∈ [−1, 1]
for all x and for all f ∈ F . Let δ > 0 and θ ∈ (0, 1). Denote D =
{(xi, yi), i = 1 : N} the current training set. Then, with probability w.p.
> 1− δ over training sets

L01(f) ≤ L̂01,θ(f) + Õ

(√
h

Nθ2

)
(7)

for any f ∈ F , where

L̂01,θ(f) =
1

N
|{i | yif(xi) ≤ θ}| (8)

This theorem upper bounds the the true loss L01(f) using the number of
margin errors for an arbitrary margin θ. Note that for θ = 0 a margin error
is also a classification error, and for θ > 0 the number of margin errors
is greater or equal to that of classification errors. Hence, the first term of
the bound increases with θ, while the second term decreases. So, if most
examples can be classified with a large margin (not necessarily 1), then the
bound of Theorem 2 can be tighter.

Structural Risk Minimization (SRM) is a model selection method.
In SRM one selects the model for which the bound on the r.h.s of (6) is
minimized. There is one assumption, that the model classes F1:m from which
f1:m are chosen are nested, i.e. F1 ⊂ F2 ⊂ . . .Fm with VC dimensions
h1 < h2 < . . . < hm. Given D, we fit f1:m on it, and obtain empirical losses
L̂01(f j), j = 1 : m. We choose the model for which

L̂01(f j) +

√
hj [1 + log(2N/hj)] + log(4/δ)

N

is minimized. While the bound itself is very loose, and will be a bad estima-
tor of the actual L(f), it has been found that this minimization procedure
performs well as a model selection criterion.
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4 Regularization

Regularization is “continuous form” of model selection. We start with a
single model class F , which is rich enough so it can fit the data well. Thus,
fitting a model f̂ ∈ F would probably be overfitting the data. We restrict
the complexity/effective degrees of freedom/effective number of parameters
of f̂ by balancing the minimization of the loss L̂ with the minimization of
the complexity of f̂ as measured by a functional R(f).

Hence, we estimate f by minimizing

J(f) = L̂(f) + λR(f), λ ≥ 0 (9)

In (9) the first term depends on the data, and the second term depends on
properties of f alone. This term is called a regularizer. One can always
cast the above optimization into a statistical estimation problem. The term
that depends on the data is called (formally) the (negative) log-likelihood,
while the term λR(f) is the (negative) (log)-prior. In this paradigm, the
minimization in (9) represent a MAP (Maximum A-Posteriori Estimation).
The “prior” R(f) is typically favoring “simple” functions (more about this
later). Forms of regularization have been in use in statistics for a long time,
under the name shrinkage.

Example 2 (Linear Regression with Least Squares cost) The (unreg-
ularized) problem is

min
β

N∑
i=1

(yi − βTxi)2 (10)

This problem has the closed form solution

β̂ = (XTX)−1XTY (11)

with X,Y representing respectively the matrix with the inputs xi as rows,
and the vector of corresponding outputs.

Ridge regression

min
β

N∑
i=1

(yi − βTxi)2 + λ||β||2 (12)

This is a regularized regression, with R(β) = ||β||2, which favors β vectors
near 0. This problem has the closed form solution

β̂ = (XTX + λI)−1XTY. (13)
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Lasso

min
β

N∑
i=1

(yi − βTxi)2 + λ||β||1 (14)

Here, the penalty on β is proportional to ||β||1 =
∑p

j=1 |βj |, the 1-norm of
β. We shall see later that this is a sparsity inducing penalty. The Lasso
estimator does not have a closed form expression.

In the upcoming lectures, we shall see other examples of regularization at
work.
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