Lecture Notes V - Model selection

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

November, 2020

Cross-validation

AIC and BIC

Structural risk minimization and VC dimension

Reading HTF Ch.: Ch. 7, Murphy Ch.: BIC, AIC 8.4.2 (pp 255), SRM 6.5 (pp 204)

AIC and BIC

Hold for

- ▶ parametric *F*
- ▶ log-likelihood loss $L(y, f(x)) = -\ln P(y|x, f)$ Note that $-N\hat{L}(f) = \ln P(y^{1:n}|x^{1:n}, f)$ data log likelihood
- $\hat{f} \in \mathcal{F}$ estimated by Maximum Likelihood
- (for BIC: $\frac{\partial^2 L}{\partial parameters}$ non-singular at \hat{f})

Akaike's Information Criterion (AIC)

$$AIC(\hat{f}) = -N\hat{L}(\hat{f}) - d, \tag{1}$$

where d = #parameters(f), and N =the size of \mathcal{D} .

The Bayesian Information Criterion (BIC)

$$BIC(\hat{f}) = -N\hat{L}(\hat{f}) - \frac{d}{2}\ln N, \tag{2}$$

with d = #parameters(f)

VC dimension

 \mathcal{F} shatters $\mathcal{D}_h = \{x^1, \dots x^h\}$

iff, for every possible labeling $y^{1:h} \in \{\pm 1\}$ of \mathcal{D}_h , there is a function $f \in \mathcal{F}$ that achieves that labeling, i.e. $\operatorname{sgn} f(x^i) = y^i$ for all i = 1 : m.

VC dimension

$$\mathcal{F}$$
 shatters $\mathcal{D}_h = \{x^1, \dots x^h\}$

iff, for every possible labeling $y^{1:h} \in \{\pm 1\}$ of \mathcal{D}_h , there is a function $f \in \mathcal{F}$ that achieves that labeling, i.e. $\operatorname{sgn} f(x^i) = y^i$ for all i = 1 : m.

VC dimension of \mathcal{F}

A model class \mathcal{F} over \mathbb{R}^n has VC dimension h iff h is the maximum positive integer so that there exists a set of h points in \mathbb{R}^n that is shattered by \mathcal{F} .

Structural risk minimization

Theorem

Let $\mathcal F$ be a model class of VC-dimension h and f a classifier in $\mathcal F$. Then, with probability w.p. $>1-\delta$ over training sets

$$L_{01}(f) \leq \hat{L}_{01}(f) + \sqrt{\frac{h[1 + \log(2N/h)] + \log(4/\delta)}{N}}.$$
 (3)

Structural risk minimization

Structural risk minimization

Theorem

Let $\mathcal F$ be a model class of VC-dimension h, with $f(x) \in [-1,1]$ for all x and for all $f \in \mathcal F$. Let $\delta > 0$ and $\zeta \in (0,1)$. Denote $\mathcal D = \{(x^i,y^i), i=1:N\}$ the current training set. Then, with probability $w.p. > 1-\delta$ over training sets

$$L_{01}(f) \leq \hat{L}_{01,\zeta}(f) + \tilde{\mathcal{O}}\left(\sqrt{\frac{h}{N\zeta^2}}\right) \tag{4}$$

for any $f \in \mathcal{F}$.

The test set method of bounding the classification error

Given a classifier f and a data set $\mathcal{D}^{\mathrm{test}}$ of size N. $\hat{L}_{01}(f) \sim \textit{Binomial}(L_{01}(f), N) \qquad \qquad \text{denote } \bar{b}(m, L_{01}, \delta) = \max\{L_{01} \mid \textit{Pr}[m \mid L_{01}, N] \geq \delta\}$

$$L_{01}(f) \leq \hat{L}_{01}(f) + \sqrt{\frac{\ln 1/\delta}{2N}} \quad \text{w.p. } 1 - \delta$$

$$L_{01}(f) \leq \hat{L}_{01}(f) + \sqrt{\frac{2\hat{L}_{01}\ln 1/\delta}{N}} + \frac{2\ln(1/\delta)}{N} \quad \text{w.p. } 1 - \delta$$
(6)

$$L_{01}(f) \leq \frac{\ln 1/\delta}{M}$$
 w.p. $1 - \delta$ when $\hat{L}_{01}(f) = 0$ (7)

$$|L_{01}(f) - \hat{L}_{01}(f)| \le \sqrt{\frac{\ln 1/\delta}{2N}} \quad \text{w.p. } 1 - \delta$$
 (8)

The test set method of bounding the classification error

$$|L_{01}(f) - \hat{L}_{01}(f)| \leq \sqrt{rac{\ln 1/\delta}{2N}} \quad ext{w.p. } 1 - \delta$$