STAT 535 Lecture VI **Support Vector Machines** ©Marina Meilă mmp@stat.washington.edu

Reading: Murhpy Ch 14 (14.1,14.2–14.2.4 kernels, 14.4 and equations (14.28,14.29) kernel trick, 14.5.1.–3 Support Vector Machines) Additional Reading: C. Burges - "A tutorial on SVM for pattern recognition"

These notes: Section 2,3 (convex optimization) are optional.

A simple error bound

$$L_{01}(f_N) \leq E\left[\frac{\# \text{support vectors of } f_{N+1}}{N+1}\right]$$
 (1)

where f_N denotes the SVM trained on a sample of size N.

Proof Sample N + 1 points from P_{XY} , use x^1 for testing and the remaining N for training a SVM denoted by f_N ; L_{01} is the expected probability of error on the x^1 .

Now, with the same points, train a SVM f_{N+1} on all the N + 1 points. If x^1 is not a support vector, then the SVM will be the same as f_N , and x^1 will be correctly classified (by the definition of "not a support vector"). If x^1 is a support vector, then it may or may not be correctly classified by f_N . Thus, the probability of classifying x^1 correctly is at least as large as the probability of x^1 not being a s.v. in f_{N+1} . Since x^1 can be any of the s.v. of f_{N+1} , the result follows.