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Similarity based / graph clustering
Spectral clustering
Affinity propagation
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Similarity based clustering

> Paradigm: the features we observe are measures of similarity/dissimilarity between pairs
of data points, e.g

points  features
Image segmentation  pixels distance in color space or location, separated by
a contour, belong to same texture

Social network people friends, coworkers, phone calls, emails
Text analysis words appear in same context
> The features are summarized by a single similarity measure S;;

> eg$; = eXk akfeaturex(ii) for a|| points i, j
> symmetric S; = Sj;
> non-negative S;; > 0
» We want to put points that are similar to each other in the same cluster, dissimilar points

in different clusters
> Problem is often cast as a graph cut problem

> points = graph nodes, similarity S; = weight of edge ij
>




Paradigms for grouping

» Graph cuts
remove some edges —> disconnected graph
the groups are the connected components
» By similar behavior
nodes /, j in the same group iff /,j have the same pattern of connections w.r.t other nodes
» By Embedding
> map nodes V = {1,2,...,n} — {x1,x,...,xn} € RY then use standard classification
and clustering methods
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Definitions

v

vV ={1,2,...,n}
node degree or volume

D;=)_S5;

JeV

volume of cluster C C V

Dc =D

ieC

cut between subsets C,C’ C V

> Si

ieCjec’

Multiway Normalized Cut of a partition A = {Cy.c} of V

K
MNCut(A) = Z Z Cut(Cy, Cr)

k=1 k'#k De,

in particular, for K = 2,

1 1
mvcut(C, ¢’y = cut(c, ') (7 4 )
Dc  Des



Motivation for MNCut

s, oc 1/dist(1 )
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A random walks view

» Define S
Py = E’J for alli,j € V

i

> in matrix notation P = D~'S where P = [P;], D = diag(Dx, ... Dx)
> P defines a random walk over the graph nodes V
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Grouping from the random walks point of view

> |dea: group nodes together if they transition in the same way to other clusters
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» embedding of V = mapping from V into RY

. is the same as grouping by embedding

» Wanted: similar points embedded near each other

ideally, points in the same cluster mapped to the same point in RY

Another look at P; ¢
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Some questions

> Not all graphs embed perfectly

7

» How many dimensions do we need?
» Nice, but we need to know the clusters in advance. . .



Lumpability

> A vector v is piecewise constant w.r.t a clustering A iff v; = v; whenever /,j in same
CeA

Another look at P; ¢ a piecewise

Poyog = 7 constant function

Pya = gt

fred

213 e

13 415

> Theorem [Lumpability][Meila&Shi 2001] Let S be a similarity matrix and A a clustering
with K clusters. Then P has K piecewise constant eigenvectors w.r.t A iff

> Pj = Rccr whenveri € C, for allC,C’ € A
jec’
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The spectral mapping

vi v2 v3
S . .
a 10 20 30 40 0 10 20 30 40 a 10 20 30 40
The spectral mapping: Data as elements of v2, v3
o These

P = e .

FLH eigenvectors are
v3 called piecewise

constant (PC)
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Spectral clustering in a nutshell

weighted  similarity matrix transition matrix first K eigenvectors
graph S P of P

== K clusters
normalize spectral  clustering
n vertices to rows mapping in RK
cluster;
observations
are PAINISE n x n, symmetric
similarities

5,0
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Spectral clustering
An algorithm based on [Meild and Shi, 2001b] and [Ng et al., 2002].
Spectral Clustering Algorithm

Input Similarity matrix S, number of clusters K

1. Transform S: Set D; = ZJ’-':I Sij, j = 1: n the node degrees.

Form the transition matrix P = [Py]7_; with

Pj < Sjj/D;, fori,j=1:n

2. Compute the largest K eigenvalues \;1 =1 > X\o > ... > Ak and eigenvectors vy, ...vk of

P.
3. Embed the data in principal subspace Let V =[vov3 ... v ] € R"<K x; < i-th row of
V.
4. (orthogonal initialization) Find K initial centers by
4.1 take pi randomly from xi,...X,
42 for k =2,...K set py = argmin, max,/ ukT,x,-.

5. Run the K-means algorithm on the “data” x;j., starting from the centers p7.4.



Properties of spectral clustering

> Arbitrary cluster shapes (main advantage)
> Elegant mathematically
» Practical up to medium sized problems
> Running time (by Lanczos algorithm) O(nk)/iteration.

» Works well when K known, not too large
estimating K [Azran and Ghahramani, 2006]
> Depend heavily on the similarity function (main problem)
learning the similarities
[Meil3 and Shi, 2001a],[Bach and Jordan, 2006],[Meil3 et al., 2005],[Shortreed and Meil3, 20
> Outliers become separate clusters (user must adjust K accordingly!)
» Very popular, many variants which aim to improve on the above
Diffusion maps [Nadler et al., 2006]: normalize the eigenvectors )\ivk
> Practical fix, when K large: only compute a fixed number of eigenvectors d < K. This
avoids the effects of noise in lower ranked eigenvectors
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Affinity propagation

yvyvyy

Idea Each item i € D finds an exemplar item k € D to ‘“represent” it
Affinity Propagation is to spectral clustering what Mean Shift is to K-means

number of exemplars not fixed in advance
quantities of interest

>
>
>

similarities s;, i # j (given)
availability aj of k for i = how much support there is from other items for k to be an exemplar
responsibility riy that measures how fit is k to represent i/, as compared to other possible
candidates k’.
diagonal elements s;; represent self-similarities

> larger s;j => more likely i will become an exemplar => more clusters
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Affinity Propagation

Affinity Propagation Algorithm [Frey and Dueck, 2007]
Input Similarity matrix S = [sy]_,, parameter A = 0.5
Iterate the following steps until convergence

1. ajx < Ofori,k=1:n
2. for all i

2.1 Find the best exemplar for i:  s* < max (s + ai),
A7 < argmax (sj + ajx) (can be a set of items)

2.2 for all k update responsibilities

s,-kfs*, lfk€A7
Fik <= Sik — max,/gax (Sik + aix)  otherwise
1

3. for all k update availabilities
3.1 a E,.#k[r,-k]Jr where [ric]+ = rix if rix > 0 and 0 otherwise.
3.2 forall i, aux < min{0, ric + > i ([riri+}

4. Assign an exemplar to i by k(i) < argglax(rik, + ajpr)
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