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Issues in parametric clustering
Outliers

Cluster validation

Selecting K for hard clustering

Reading HTF Ch.: , Murphy Ch.:
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Issues in parametric clustering

> Selecting K
> Outliers
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Clustering with outliers

> What are outliers?
> let p = proportion of outliers (e.g 5%-10%)
» Remedies

> mixture model: introduce a K + 1-th cluster with large (fixed) X1, bound X, away from 0
»> K-means and EM

» robust means and variances

e.g eliminate smallest and largest pny /2 samples in mean computation (trimmed mean)
» K-medians [Charikar and Guha, 1999]
> replace Gaussian with a heavier-tailed distribution (e.g. Laplace)

> single-linkage: do not count clusters with < r points

Is K meaningful when outliers present?
> alternative: non-parametric clustering
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Cluster validation

» External

> when the true clustering A™ is known
> compares result(s) A obtained by algorithm A with A*
> validates algorithms/methods

» Internal - no external reference
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External cluster validation

Scenarios
> given data D, truth A*; algorithm A produces A
is A close to A*?
» given data D, truth A*; algorithm A produces A, algorithm A’ produces A’
which of A, A’ is closer to A*?
» multiple datasets, multiple algorithms
which algorithm is better?

A distance between clusterings d(A, A’) needed
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Requirements for a distance

Depend on the application

> Applies to any two partitions of the same data set

Makes no assumptions about how the clusterings are obtained

> Values of the distance between two pairs of clusterings comparable under the weakest
possible assumptions

» Metric (triangle inequality) desirable

» understandable, interpretable

v
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The confusion matrix

Let A = {Cix}, A ={Cl,}

Define ny = |G|, nj, = ‘C/i/l

M = |GeNCLl, k=1:K Kk =1:K

note: 30, Mygr = Ny, D04 Myt = Nk, Doy g Mgy = N
The confusion matrix M € RKXK' s

vV YVYVYY

k' =1:K’'
M = [mkk’]k:I:IK

» all distances and comparison criteria are based on M
> the normalized confusion matrix P = M/n
myyer

Pk =

> The normalized cluster sizes py = ny/n, p,, = nj,/n are the marginals of P

Pk = ZPW Pk = ZPW
K k
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The Misclassification Error (ME) distance

>

vvyyvyy

Define the Misclassification Error (ME) distance dye

K
dye = 1 — max Z Pk,x(ky 7 € {all K—permutations}, K < K'w.l.o.g
k=1

Interpretation: treat the clusterings as classifications, then minimize the classification error
over all possible label matchings

Or: ndpye is the Hamming distance between the vectors of labels, minimized over all
possible label matchings

can be computed in polynomial time by Max bipartite matching algorithm (also known as
Hungarian algorithm)

Is a metric: symmetric, > 0, triangle inequality

dye (D1, A2) + dye(A1, As) > dye(Az, As)

easy to understand (very popular in computer science)

dve <1-1/K

bad: if clusterings not similar, or K large, dyg is coarse/indiscriminative
recommended: for small K



The Variation of Information (VI) distance
Clusterings as random variables

> Imagine points in D are picked randomly, with equal probabilities
> Then k(i), k’(j) are random variables
with Pr[k] = py, Prlk, k'] = prxs
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Incursion in information theory

vvyyvVyy

Entropy of a random variable/clustering Hx = — >, p« In px
0< Ha<IhK

Measures uncertainty in a distribution (amount of randomness)
Joint entropy of two clusterings

Haar = = Pukr In
P

Har ao < Ha + Hpar with equality when the two random variables are independent
Conditional entropy of A’ given A

HA/|A _ Zp ZPW Pk’

Measures the expected uncertainty about k/ when k is known
Har|a < Har with equality when the two random variables are independent
Mutual information between two clusterings (or random variables)

IA,A HA+HA/ 7HA’,A

HA/ — HA"A

Measures the amount of information of one r.v. about the other
In,an > 0, symmetric. Equality iff r.v.'s independent



The VI distance

» Define the Variation of Information (VI) distance

dyi(A,A") = Ha+Hpa —2lp A
= Hajar + Harja

> Interpretation: dy; is the sum of information gained and information lost when labels are
switched from k() to k()

> dy; symmetric, > 0

> dy; obeys triangle inequality (is a metric)

Other properties

» Upper bound
dyi < 21In Kmax if K, K’ < Kimax < /0
(asymptotically attained)

» dy; < Inn over all partitions (attained)
» Unbounded! and grows fast for small K
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Other criteria and desirable properties

» Comparing clustering by indices of similarity i(A, A’)
from statistics (Rand, adjusted Rand, Jaccard, Fowlkes-Mallows ...)
range=[0,1], with i(A, A’) =1 for A = A/
the properties of these indices not so good
any index can be transformed into a “distance” by d(A,A’) =1 — (A, A')
» Other desirable properties of indices and distances between clusterings
> n-invariance
> locality
> convex additivity

Yvy

v
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» Define Nj; = # pairs which are together in both clusterings, Ni» = # pairs together in

A, separated in A/, Np; (conversely), Nyp =#number pairs separated in both clusterings
> Rand index = w

pairs
> Jaccard index = #
pairs

> Fowlkes-Mallows = Precisionx Recall
» all vary strongly with K. Thereforek, Adjusted indices used mostly

Jacard —

———_Larsen
Fowlkes T

) = 5

" Rand

Larsen

Fowlkes

Jacard

2 4 6 8



Internal cluster(ing) validation

Why?
> Most algorithms output a clustering even if no clusters in data (parametric algorithms)
How to decide whether to accept it or not?
> related to selection of K
» Some algorithms are run multiple times (e.g EM)
How to select the clustering(s) to keep?

» Validate by the cost £

> A is valid if L(A) is "almost optimal”
> intractable to know in general (for NP-hard problems)
> not enough to be “meaningful”
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Internal cluster(ing) validation

Why?
> Most algorithms output a clustering even if no clusters in data (parametric algorithms)
How to decide whether to accept it or not?
> related to selection of K
» Some algorithms are run multiple times (e.g EM)
How to select the clustering(s) to keep?

» Validate by the cost £
> A is valid if L(A) is "almost optimal”

> intractable to know in general (for NP-hard problems)
> not enough to be “meaningful”

A is valid if A stable and £(A) is "almost optimal”

> stable = any other A’ that is “almost optimal’ must be ‘“close” to A

v
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Oracle Yes No ?
SS method Yes, Ol=1e~* Don’t know Don’t know
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Heuristics

v

Gap heuristic
single linkage:
> define /, length of r-th edge added to MST

v

h<h<..lh—k<lhxu<...

intracluster deleted
» lh—k/lh—k+1 < 1 should be small
> min diameter:
L(A)
max; jeD [|xi — xjl|
L(A)

miny ;. distance(Cy, Cy/)

> etc
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Quadratic cost

L(A) = const — trace X T (A)AX(A)

with X = matrix reprentation for A

then, if cost value £L(A) small, we can prove that clustering A is almost optimal
This holds for K-means (weighted, kernelized) and several graph partioning costs
(normalized cut, average association, correlation clustering, etc)

vvyyvVyy
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Matrix Representations

> matrix reprentations for A
> unnormalized (redundant) representation

o 1 ie( .
X,-k:{o :€C: fori=1:nk=1:K

> normalized (redundant) representation

1/+/ i .
ka={0/ |Gl :;g: fori=1:nk=1:K

therefore X,/ X,» = d(k, k"), X orthogonal matrix
Xk = column k of X
» normalized non-redundant reprentation
» Xy is determined by Xj.x_1
» hence we can use Y € R7X(K=1) orthogonal representation
> intuition: Y represents a subspace (is an orthogonal basis)
»> K centers in IRd, d > K determine a K — 1 dimesional subspace plus a translation



» Example: the K-means cost
> remember

1 2
L) = > > MHX:' — xj||° + constant
k=1 i,jE Cy
> in matrix form q
L(A) = —EXTAX + constant

where
Ajj = XiTXj
is the Gram matrix of the data
> if data centered, ie >, x; = 0 and Y rotated appropriately [Meild, 2006]

1
L(A) = =5 YTAY + constant

» Assume k-means cost from now on
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A spectral lower bound
> minimizing £(A) is equivalent to
max Y T AY

over all Y € R"(K=1) that represent a clustering
> a relaxation
max YT AY

over all Y € R™(K=1) orthogonal
> solution to relaxed provlem is

Y* = eigenvectors 1.x_1 of A

K-1
£ =" (A
k=1

» L* = constant — L* = trace A — L* is lower bound for L

L* < L(A) forall A
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A theorem (Meila, 2006)

Theorem

> define . 1
YTAY — SSK=1 3
5= Y AY 2o A £(6) = 26[1—6/(K —1)]
Ak—1— Ak

. min,max | Cy |
> define ppin, Pmax = ——,

> then, whenever g(§) < p,:,;,,, we have that
dME(A7 Aopt) S 5(6)pmax

where dyge is misclassification error distance

Remarks
> it is a worst-case result
» makes no (implicit) distributional assumptions
» when theorem applies, bound is good dye(A, A%Y) < pmin
> applies only if a good clustering is found (not all data, clusterings)
» intuiton: if data well clustered, K — 1 principal subspace is aligned with cluster centers
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Is this clustering approximately correct?

SS method Yes, Ol=1e~* Don’t know Don’t know

£
H
[
1
)
=
£
]
2
2
9
S
o)
5
2
8
o
3
A
2
o
2
S
S
o
[}
=
b=
a
i
<
=
17




Is this clustering approximately correct?

SS method Yes, Ol=1e~* Don’t know Don’t know

» Given data D, clustering A
> L( data, clustering) (e.g. K-means)
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Is this clustering approximately correct?

SS method Yes, Ol=1e~* Don’t know Don’t know

» Given data D, clustering A

> L( data, clustering) (e.g. K-means)

» “correct”
» = the "only” “good” clustering supported by D
> & any other A’ with smaller £ is e-close to A

£
H
[
1
)
=
£
]
2
2
9
S
o)
5
2
8
o
3
A
2
o
2
S
S
o
[}
=
(=]
a
i
<
=
17




Is this clustering approximately correct?

SS method Yes, Ol=1e—* Don’t know Don’t know
good, stable bad unstable

> Given data D, clustering A
> L( data, clustering) (e.g. K-means)
> “correct”

= the “only” “good” clustering supported by D

& any other A’ with smaller £ is e-close to A
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What is an Optimality Interval (Ol)?

Theorem (Meta-theorem)

If A fits the data D well, then we shall prove that any other clustering A’ that also fits D well
will be a small perturbation of A.
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What is an Optimality Interval (Ol)?

Theorem (Meta-theorem)

If A fits the data D well, then we shall prove that any other clustering A’ that also fits D well
will be a small perturbation of A.

» A’ is good if
L) < £(8)

» § is Ol: for all good A/,
due(A’,A) <6
where dye is the misclassification error/earth mover distance

> if Ol exists we say A is stable
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How? 1. Mapping a clustering to a matrix

n=5 A=(1,1,1,22), X(A) =

1. X(A) is symmetric, positive definite, > 0 elements
2. X(A) has row sums equal to 1
3. trace X(A) = K

IX(Q)IF = K

Let X be the space n x n of matrices with Properties 1, 2, 3 above

> X is convex
» X(C) are extreme points of X

O O wl-wl—wl-

O O wi—wl—wl—

O O wl-wl—wl—

NIV O O O

NIV O O O
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How? 2. Convex relaxations

Original clustering problem Given data D, K, £()

minimizea £(D,A) with solution A°P*

Convex relaxation

> map clustering A — matrix X(A) € X
> so that £(X) convex in X
» Relaxed problem

L* = min £(X), with solution X*
XeX

1)



The Sublevel Set (SS) method

ework Given data, L , convex relaxation
btep 0 Cluster data, obtain a clustering A.

XX<p={X € X, L(X) < c} is sublevel set of L

Loss

Loss(C )

- ‘-t.“
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The Sublevel Set (SS) method

ework Given data, L , convex relaxation
btep 0 Cluster data, obtain a clustering A.

btep 1 Use convex relaxation to define new optimization problem

SS § = max [ X(A) = X'||lg, st LX) < L(A).
X'ex

XX<) = {X € X, L(X) < c} is sublevel set of L

Loss

Loss(C )
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The Sublevel Set (SS) method

ework Given data, L , convex relaxation
btep 0 Cluster data, obtain a clustering A.

btep 1 Use convex relaxation to define new optimization problem
SS § = max [ X(A) = X'||lg, st LX) < L(A).
X'ex

btep 2 Prove that || ||[F <6 = due() <e M, MLJ 2012
BlDone: ¢ is a Optimality Interval (Ol) for A.

XX<p={X € X, L(X) < c} is sublevel set of L

Loss

Loss(C )

| — i—

NGEE)

STAT 391 GoodNote: Lecture VII-Clustering — Part |



Two technical bits

1. SS is convex only if ||X” — X(A)]|| concave

> Use || || Frobenius norm. ||X(A)||2 = K for any clustering.
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Two technical bits

1. SS is convex only if ||X” — X(A)]|| concave

> Use || || Frobenius norm. ||X(A)||2 = K for any clustering.

2. Relating || || to distance between clusterings.
IX(A) - X(AY[2 <5 = due (D, A7) < €
distance between matrices “misclassification error” metric
between clusterings

» Theorem proved in M, Machine Learning Journal, 2012 with € = 26pax-
The tightest result known. Upper/lower bounds between dye, || || and Rand Index

v

v

Proofs use geometry of convex sets + refined analysis for small distances
Example from Wan,M NIPS16 Ol by existing results Rohe et al. 2011 ~ 10% Ol by our method

v
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Relation with other work

» Previous ideas on Ol

> Spectral bounds for Spectral Clustering M,Shortreed,Xu AISTATS05

> Spectral bounds for K-means, NCut and other quadratic costs M, ICML06 and JMVA 2018

> Spectral bounds for networks model based clustering: Stochastic Block Model and Preference
Frame Model Wan,M NIPS2016

» Previous work we build on

> Convex relaxations for clustering MANY! here we use SDP for K-means Peng, Wei 2007
> Transforming bound on ||X — X’||¢ into bound on dyg M MLJ 2012

» Contrast with work on Clusterability and resilience, e.g. Ben-David, 2015,Bilu,Linial 2009

> “Their" work: assume 3 stable A, prove it can be found efficiently
»> This work: given A, prove it is stable
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For what clustering paradigms can we obtain Ol's?

“All" ways to map A to a matrix
space  matrix definition size

X X(D) X; =1/ngiffi,j € Cx _nx n, block-diagonal
X X(A) Xy = 1iffi,j € Cy n % n, block-diagonal
Z Z(A)  Zy =1/\/ngiffi € G, n X K, orthogonal



For what clustering paradigms can we obtain Ol's?

“All" ways to map A to a matrix
space  matrix definition size
X X(A)  Xj =1/niffi,j € G nx n, block-diagonal
X X(A) X = 1iffi,j € G n x n, block-diagonal
Z Z(A)  Zy =1/\/nciffi e G nx K, orthogonal

Theorem
M NeurlPS 2018 If L has a convex relaxation involving one of X, X', Z, then

(1) There exists a convex SS problem

(85) 6= min (X(A),X') (similarly for X, Z).
X'EXX<

(2) From optimal § an Ol & can be obtained, valid when & < pyin.

X: £ = (K — 5)Pmax
5. o Skelk] ni+(n;p;<4.r1)2+(;<—1)—25
Z s e = (K — 82/2)Pmax

Existence of guarantee depends only on space of convex relaxation.
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Results for K-means clusterings
K = 4 equal Gaussian clusters, n = 1024, ||ux — || = 4v/2 ~ 5.67

data for c = 0.9 Values of € vs cluster spread o
0.4 v v v v " 1
= =3
03
0.25 =
‘%’
0.2
=
0.15 +
==
0.1
0.05 %
ol —— —_— —_— ¥ .
0.6 0.7 0.8 0.9 11
sigma

M ICMLO06, sbp=M NeurlPS 2018

Aspirin (CgO4Hg) molecular simulation data Chmiela et al. 2017

K=2
Pmin = 26
Pmax = .74
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Separation statistics

distance to own center over min center separation,  distance to second closest center over distance to
colored by o. own center, versus o
5 +
45 *
.
W i ]
.
+ H i
35 1 1
' -+ ;
| i +
E | i i
1 *
2 E ' N S
54 L+
2 i [
! T
15 : : T El
] : | H !
- ' ' '
L ! L } Iy ! i -+ R
03 04 0.5 0.6 0.7 08 0.9 1 711 12 0.‘6 0.‘7 0.‘8 0‘9 1‘1
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Results for Spectral Clustering by Normalized Cut

Spectral=M AISTATSO05, sbp=M NeurlPS 2018

Synthetic S, n = 100 Chemical reaction data, n ~ 1000
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Stablllty and the selection of K Cheng,M,Harchaoui (in preparation)

n_200_normal_False_cluster_equal_size_False_full_dimension_True_k_true_{8.pdf
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Selecting K for hard clusterings

> based on statistical testing: the gap statistic (Tibshirani, Walther, Hastie, 2000)

> X-means [Pelleg and Moore, 2000] heuristic: splits/merges clusters based on statistical
tests of Gaussianity

> Stability methods
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The gap statistic

Idea
> for some cost £ compare L(Ag) with its expected value under a null distribution
> choose null distribution to have no clusters

> Gaussian (fit to data)
» uniform with convex support
» uniform over Kg principal components of data

> null value = Ep, [Lk,n] the expected value of the cost of clustering n points from Py into K
clusters
» the gap
g(K) = Epy[Lk,n] — L(AK) = Lk — L(Ak)

> choose K* corresponding to the largest gap
> nice: it can also indicate that data has no clusters
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Practicalities

> K% = Ep,[Lk,n] can rarely be computed in closed form
(when Py very simple)
» otherwise, estimate ﬁ?( be Monte-Carlo sampling
i.e generate B samples from Py and cluster them
> if sampling, variance 5,2( of estimate EA?( must be considered
5}2( is also estimated from the samples
> selection rule: K* = smallest K such that g(K) > g(K + 1) — sk11
» favored LY(A) = 3, ﬁ iec, IIxi— pk||? = sum of cluster variances
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Stability methods for choosing K

> like bootstrap, or crossvalidation
> ldea (implemented by [Ben-Hur et al., 2002])

for each K
1. perturb data D — D’
2. cluster D' — Aj
3. compare Ak, Aj. Are they similar?
If yes, we say Ak is stable to perturbations

Fundamental assumption If Ak is stable to perturbations then K is the correct number of
clusters

> these methods are supported by experiments (not extensive)
> not YET supported by theory ...see [von Luxburg, 2009] for a summary of the area
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A stability based method for model-based clustering

» The algorithm of [Lange et al., 2004]

divide data into 2 halves Dy, D, at random

cluster (by EM) D; — Aq, 61

cluster (by EM) D, — Ay, 6,

cluster D; using 6 — A}

compare A1, Ag

repeat B times and average the results

repeat for each K

select K where A1, A} are closest on average (or most times)

WAVARC IR
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