Lecture Notes VII: Classic and Modern Data Clustering - Part III

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

> November, 2020

Issues in parametric clustering Outliers

Cluster validation

Selecting K for hard clustering

Reading HTF Ch.: , Murphy Ch.:

Issues in parametric clustering

- ► Selecting *K*
- Outliers

Clustering with outliers

- What are outliers?
- ▶ let p = proportion of outliers (e.g 5%-10%)
- Remedies
 - ▶ mixture model: introduce a K+1-th cluster with large (fixed) Σ_{K+1} , bound Σ_k away from 0
 - K-means and EM
 - robust means and variances
 - e.g eliminate smallest and largest $pn_k/2$ samples in mean computation (trimmed mean)
 - ► K-medians [Charikar and Guha, 1999]
 - replace Gaussian with a heavier-tailed distribution (e.g. Laplace)
 - ▶ single-linkage: do not count clusters with < r points</p>

Is K meaningful when outliers present?

▶ alternative: non-parametric clustering

Cluster validation

- External
 - ightharpoonup when the true clustering Δ^* is known
 - compares result(s) Δ obtained by algorithm A with Δ*
 - validates algorithms/methods
- ▶ Internal no external reference

External cluster validation

Scenarios

- given data D, truth Δ*; algorithm A produces Δ is Δ close to Δ*?
- given data D, truth Δ*; algorithm A produces Δ, algorithm A' produces Δ' which of Δ, Δ' is closer to Δ*?
- multiple datasets, multiple algorithms which algorithm is better?

A distance between clusterings $d(\Delta, \Delta')$ needed

Requirements for a distance

Depend on the application

- Applies to any two partitions of the same data set
- ▶ Makes no assumptions about how the clusterings are obtained
- Values of the distance between two pairs of clusterings comparable under the weakest possible assumptions
- ► Metric (triangle inequality) desirable
- ► understandable, interpretable

The confusion matrix

- ► Let $\Delta = \{C_{1:K}\}, \ \Delta' = \{C'_{1:K'}\}$ ► Define $n_k = |C_k|, \ n'_{k'} = |C'_{k'}|$
- $m_{kk'} = |C_k \cap C'_{k'}|, k = 1 : K, k' = 1 : K'$
- ▶ note: $\sum_{k} m_{kk'} = n'_{k'}$, $\sum_{k'} m_{kk'} = n_k$, $\sum_{k,k'} m_{kk'} = n$
- ▶ The confusion matrix $M \in \mathbb{R}^{K \times K'}$ is

$$M = [m_{kk'}]_{k=1:K}^{k'=1:K'}$$

- ▶ all distances and comparison criteria are based on M
- ▶ the normalized confusion matrix P = M/n

$$p_{kk'} = \frac{m_{kk'}}{n}$$

▶ The normalized cluster sizes $p_k = n_k/n$, $p'_{k'} = n'_{k'}/n$ are the marginals of P

$$p_k = \sum_{k'} p_{kk'} \quad p_{k'} = \sum_k p_{kk'}$$

The Misclassification Error (ME) distance

▶ Define the Misclassification Error (ME) distance d_{ME}

$$d_{ME} \, = \, 1 - \max_{\pi} \, \sum_{k=1}^{K} p_{k,\pi(k)} \quad \pi \in \{ \text{all } K\text{-permutations} \}, \; K \leq K' \text{w.l.o.g}$$

- Interpretation: treat the clusterings as classifications, then minimize the classification error over all possible label matchings
- Or: nd_{ME} is the Hamming distance between the vectors of labels, minimized over all possible label matchings
- can be computed in polynomial time by Max bipartite matching algorithm (also known as Hungarian algorithm)
- ▶ Is a metric: symmetric, \geq 0, triangle inequality

$$d_{ME}(\Delta_1, \Delta_2) + d_{ME}(\Delta_1, \Delta_3) \geq d_{ME}(\Delta_2, \Delta_3)$$

- easy to understand (very popular in computer science)
- ▶ $d_{ME} \leq 1 1/K$
- ▶ bad: if clusterings not similar, or K large, d_{ME} is coarse/indiscriminative
- recommended: for small K

The Variation of Information (VI) distance Clusterings as random variables

- ightharpoonup Imagine points in \mathcal{D} are picked randomly, with equal probabilities
- ► Then k(i), k'(j) are random variables with $Pr[k] = p_k, Pr[k, k'] = p_{kk'}$

Incursion in information theory

- **Entropy** of a random variable/clustering $H_{\Delta} = -\sum_{k} p_{k} \ln p_{k}$
- ▶ $0 \le H_{\Delta} \le \ln K$
- Measures uncertainty in a distribution (amount of randomness)
- ▶ Joint entropy of two clusterings

$$H_{\Delta,\Delta'} = -\sum_{k,k'} p_{kk'} \ln p_{kk'}$$

- ▶ $H_{\Delta',\Delta} \leq H_{\Delta} + H_{\Delta'}$ with equality when the two random variables are independent
- ▶ Conditional entropy of Δ' given Δ

$$H_{\Delta'|\Delta} = -\sum_{k} p_k \sum_{k'} \frac{p_{kk'}}{p_k} \ln \frac{p_{kk'}}{p_k}$$

- \blacktriangleright Measures the expected uncertainty about k' when k is known
- lacktriangledown $H_{\Delta'|\Delta} \leq H_{\Delta'}$ with equality when the two random variables are independent
- Mutual information between two clusterings (or random variables)

$$I_{\Delta,\Delta} = H_{\Delta} + H_{\Delta'} - H_{\Delta',\Delta}$$
$$= H_{\Delta'} - H_{\Delta'|\Delta}$$

- ▶ Measures the amount of information of one r.v. about the other
- ▶ $I_{\Delta,\Delta} \ge 0$, symmetric. Equality iff r.v.'s independent

The VI distance

► Define the Variation of Information (VI) distance

$$d_{VI}(\Delta, \Delta') = H_{\Delta} + H_{\Delta'} - 2I_{\Delta', \Delta}$$
$$= H_{\Delta|\Delta'} + H_{\Delta'|\Delta}$$

- ▶ Interpretation: d_{VI} is the sum of information gained and information lost when labels are switched from k() to k'()
- ▶ d_{VI} symmetric, ≥ 0
- ► d_{VI} obeys triangle inequality (is a metric)

Other properties

- ▶ Upper bound $d_{VI} \le 2 \ln K_{max}$ if $K, K' \le K_{max} \le \sqrt{n}$ (asymptotically attained)
- ▶ $d_{VI} \le \ln n$ over all partitions (attained)
- ► Unbounded! and grows fast for small *K*

Other criteria and desirable properties

- ▶ Comparing clustering by **indices of similarity** $i(\Delta, \Delta')$
 - ▶ from statistics (Rand, adjusted Rand, Jaccard, Fowlkes-Mallows ...)
 - range=[0,1], with $i(\Delta, \Delta') = 1$ for $\Delta = \Delta'$ the properties of these indices not so good
 - any index can be transformed into a "distance" by $d(\Delta, \Delta') = 1 i(\Delta, \Delta')$
- ▶ Other desirable properties of indices and distances between clusterings
 - n-invariance
 - locality
 - convex additivity

- ▶ Define $N_{11} = \#$ pairs which are together in both clusterings, $N_{12} = \#$ pairs together in Δ , separated in Δ' , N_{21} (conversely), $N_{22} = \#$ number pairs separated in both clusterings
- ► Rand index = $\frac{N_{11}+N_{22}}{\#_{pairs}}$
- ▶ Jaccard index = $\frac{N_{11}}{\#pairs}$
- ► Fowlkes-Mallows = Precision× Recall
- ▶ all vary strongly with K. Thereforek, Adjusted indices used mostly

$$adj(i) = \frac{i - \overline{i}}{\max(i) - \overline{i}}$$

Internal cluster(ing) validation

Why?

- Most algorithms output a clustering even if no clusters in data (parametric algorithms) How to decide whether to accept it or not?
- related to selection of K
- ► Some algorithms are run multiple times (e.g EM) How to select the clustering(s) to keep?
- ► Validate by the cost £
- $ightharpoonup \Delta$ is valid if $\mathcal{L}(\Delta)$ is "almost optimal"
 - ▶ intractable to know in general (for NP-hard problems)
 - ▶ not enough to be "meaningful"

Internal cluster(ing) validation

Why?

- Most algorithms output a clustering even if no clusters in data (parametric algorithms) How to decide whether to accept it or not?
- related to selection of K
- ► Some algorithms are run multiple times (e.g EM) How to select the clustering(s) to keep?
- ► Validate by the cost £
- $ightharpoonup \Delta$ is valid if $\mathcal{L}(\Delta)$ is "almost optimal"
 - ▶ intractable to know in general (for NP-hard problems)
 - not enough to be "meaningful"
- ▶ \triangle is valid if \triangle stable and $\mathcal{L}(\triangle)$ is "almost optimal"
 - ightharpoonup stable = any other Δ' that is "almost optimal" must be "close" to Δ

Yes Yes, OI=1e⁻⁴ Oracle SS method

No Don't know

Don't know

Heuristics

- ► Gap heuristic
- single linkage:
 - ▶ define I_r length of r-th edge added to MST

$$\underbrace{I_1 \leq I_2 \leq \dots I_{n-K}}_{\text{intracluster}} \leq \underbrace{I_{n-K+1} \leq \dots}_{\text{deleted}}$$

- ▶ $I_{n-K}/I_{n-K+1} \le 1$ should be small
- min diameter:

$$\begin{split} & \frac{\mathcal{L}(\Delta)}{\max_{i,j \in \mathcal{D}} ||x_i - x_j||} \\ & \frac{\mathcal{L}(\Delta)}{\min_{k,k'} \operatorname{distance}(C_k, C_{k'})} \end{split}$$

▶ etc

Quadratic cost

- $L(\Delta) = const trace X^{T}(\Delta)AX(\Delta)$
- with X = matrix reprentation for Δ
- \blacktriangleright then, if cost value $\mathcal{L}(\Delta)$ small, we can prove that clustering Δ is almost optimal
- ► This holds for K-means (weighted, kernelized) and several graph partioning costs (normalized cut, average association, correlation clustering, etc)

Matrix Representations

- ▶ matrix reprentations for △
 - unnormalized (redundant) representation

$$\tilde{X}_{ik} = \begin{cases} 1 & i \in C_k \\ 0 & i \notin C_k \end{cases}$$
 for $i = 1: n, k = 1: K$

normalized (redundant) representation

$$X_{ik} \ = \ \left\{ \begin{array}{ll} 1/\sqrt{|C_k|} & i \in C_k \\ 0 & i \not \in C_k \end{array} \right. \quad \text{for } i=1:n, k=1:K$$

therefore $X_k^T X_{k'} = \delta(k, k')$, X orthogonal matrix $X_k = \text{column } k$ of X

- normalized non-redundant reprentation
 - \triangleright X_K is determined by $X_{1:K-1}$
 - ▶ hence we can use $Y \in \mathbb{R}^{n \times (K-1)}$ orthogonal representation
 - intuition: Y represents a subspace (is an orthogonal basis)
 - ightharpoonup K centers in \mathbb{R}^d , d > K determine a K-1 dimesional subspace plus a translation

- ► Example: the K-means cost
 - remember

$$\mathcal{L}(\Delta) = \sum_{k=1}^{K} \sum_{i,j \in C_k} \frac{1}{2|C_k|} ||x_i - x_j||^2 + \text{constant}$$

in matrix form

$$\mathcal{L}(\Delta) = -\frac{1}{2}X^TAX + \text{constant}$$

where

$$A_{ij} = x_i^T x_j$$

is the Gram matrix of the data

▶ if data centered, ie $\sum_i x_i = 0$ and Y rotated appropriately [Meilă, 2006]

$$\mathcal{L}(\Delta) = -\frac{1}{2}Y^{T}AY + \text{constant}$$

► Assume k-means cost from now on

A spectral lower bound

• minimizing $\mathcal{L}(\Delta)$ is equivalent to

$$\max Y^T A Y$$

over all $Y \in \mathbb{R}^{n \times (K-1)}$ that represent a clustering

▶ a relaxation

$$\max Y^T A Y$$

over all $Y \in \mathbb{R}^{n \times (K-1)}$ orthogonal solution to relaxed provlem is

$$Y^* = \text{eigenvectors}_{1:K-1} \text{ of } A$$

$$\mathcal{L}^* = \sum_{k=1}^{K-1} \lambda_k(A)$$

• $\mathcal{L}^* = constant - \mathcal{L}^* = trace A - \mathcal{L}^*$ is lower bound for \mathcal{L}

$$\mathcal{L}^* \leq \mathcal{L}(\Delta)$$
 for all Δ

A theorem (Meila, 2006)

Theorem

▶ define

$$\delta = \frac{Y^T A Y - \sum_{k=1}^{K-1} \lambda_k}{\lambda_{K-1} - \lambda_K} \qquad \varepsilon(\delta) = 2\delta[1 - \delta/(K-1)]$$

- define $p_{min}, p_{max} = \frac{\min, \max |C_k|}{n}$
- then, whenever $\varepsilon(\delta) \leq p_{min}$, we have that

$$d_{ME}(\Delta, \Delta^{opt}) \leq \varepsilon(\delta) p_{max}$$

where d_{ME} is misclassification error distance

Remarks

- ▶ it is a worst-case result
- makes no (implicit) distributional assumptions
- when theorem applies, bound is good $d_{ME}(\Delta, \Delta^{opt}) \leq p_{min}$
- ▶ applies only if a good clustering is found (not all data, clusterings)
- lacktriangle intuiton: if data well clustered, K-1 principal subspace is aligned with cluster centers

Don't know

Don't know

Is this clustering approximately correct?

SS method

Yes, $OI=1e^{-4}$

Don't know

Don't know

- ▶ Given data \mathcal{D} , clustering Δ
- ► L(data, clustering) (e.g. K-means)

Is this clustering approximately correct?

SS method

Yes, $OI=1e^{-4}$

Don't know

Don't know

- Given data \mathcal{D} , clustering Δ
- ► L(data, clustering) (e.g. K-means)
- ► "correct"
 - $lackbox{lack}=$ the "only" "good" clustering supported by ${\cal D}$
 - \blacktriangleright any other Δ' with smaller \mathcal{L} is ε -close to Δ

Is this clustering approximately correct?

Don't know

SS method

good, stable

Don't know bad

Don't know unstable

- ▶ Given data \mathcal{D} , clustering Δ
- ► L(data, clustering)
- ► "correct"

= the "only" "good" clustering supported by \mathcal{D} \Leftrightarrow any other Δ' with smaller \mathcal{L} is ε -close to Δ (e.g. K-means)

What is an **Optimality Interval (OI)**?

Theorem (Meta-theorem)

If Δ fits the data $\mathcal D$ well, then we shall prove that any other clustering Δ' that also fits $\mathcal D$ well will be a small perturbation of Δ .

What is an **Optimality Interval (OI)**?

Theorem (Meta-theorem)

If Δ fits the data $\mathcal D$ well, then we shall prove that any other clustering Δ' that also fits $\mathcal D$ well will be a small perturbation of Δ .

▶ Δ' is good if

$$\mathcal{L}(\Delta') \leq \mathcal{L}(\Delta) + \alpha$$
.

• δ is OI: for all good Δ' ,

$$d_{ME}(\Delta', \Delta) \leq \delta$$

where d_{ME} is the misclassification error/earth mover distance

▶ if OI exists we say \triangle is **stable**

How? 1. Mapping a clustering to a matrix

$$n = 5, \ \Delta = (1, 1, 1, 2, 2),$$

$$X(\Delta) = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

- 1. $X(\Delta)$ is symmetric, positive definite, ≥ 0 elements
- 2. $X(\Delta)$ has row sums equal to 1
- 3. trace $X(\Delta) = K$

$$||X(\Delta)||_F^2 = K$$

Let **X** be the space $n \times n$ of matrices with Properties 1, 2, 3 above

- X is convex
- \triangleright X(C) are extreme points of X

How? 2. Convex relaxations

Original clustering problem Given data \mathcal{D} , K, $\mathcal{L}()$

 $\mathsf{minimize}_\Delta \quad \mathcal{L}(\mathcal{D}, \Delta) \quad \mathsf{with solution} \ \Delta^{\mathrm{opt}}$

Convex relaxation

- ▶ map clustering Δ → matrix $X(\Delta) \in X$
- ightharpoonup so that $\mathcal{L}(X)$ convex in X
- ► Relaxed problem

$$L^* = \min_{X \in \mathbf{X}} \mathcal{L}(X), \quad \text{with solution } X^*$$
 (1)

The Sublevel Set (SS) method

ework Given data, L , convex relaxation Step 0 Cluster data, obtain a clustering Δ .

tep 1 Use convex relaxation to define new optimization problem

SS
$$\delta = \max_{X' \in \mathbf{X}} \|X(\Delta) - X'\|_F$$
, s.t. $\mathcal{L}(X') \leq \mathcal{L}(\Delta)$.

 $XX_{\leq l} = \{X \in X, \mathcal{L}(X) \leq c\}$ is sublevel set of L

STAT 391 GoodNote: Lecture VII-Clustering - Part III

tep 1 Use convex relaxation to define new optimization problem

SS
$$\delta = \max_{X' \in \mathbf{X}} \|X(\Delta) - X'\|_F$$
, s.t. $\mathcal{L}(X') \leq \mathcal{L}(\Delta)$.

Step 2 Prove that $\| \|_F \le \delta \Rightarrow d_{ME}() \le \epsilon$ Done: ϵ is a Optimality Interval (OI) for Δ .

 $\mathbf{XX}_{\leq l} = \{X \in \mathbf{X}, \, \mathcal{L}(X) \leq c\}$ is sublevel set of L

M, MLJ 2012

Two technical bits

- 1. SS is convex only if $||X' X(\Delta)||$ concave
 - ▶ Use $|| ||_F$ Frobenius norm. $||X(\Delta)||_F^2 = K$ for any clustering.

Two technical bits

- 1. SS is convex only if $||X' X(\Delta)||$ concave
 - Use $|| ||_F$ Frobenius norm. $||X(\Delta)||_F^2 = K$ for any clustering.

2. Relating $\| \cdot \|_F$ to distance between clusterings.

$$||X(\Delta) - X(\Delta)'||_F^2 \le \delta$$
 \Rightarrow distance between matrices

 $d_{ME}(\Delta, \Delta') \leq \epsilon$ "misclassification error" metric between clusterings

- ▶ Theorem proved in M, Machine Learning Journal, 2012 with $\epsilon = 2\delta p_{\text{max}}$.
- ▶ The tightest result known. Upper/lower bounds between d_{ME} , $\| \cdot \|_F$ and Rand Index
- ▶ Proofs use geometry of convex sets + refined analysis for small distances
- **Example from Wan,M NIPS16 OI by existing results Rohe et al.** $2011 \sim 10^2$ OI by our method

Relation with other work

Previous ideas on OI

- ► Spectral bounds for Spectral Clustering M, Shortreed, Xu AISTATS05
- Spectral bounds for K-means, NCut and other quadratic costs M, ICML06 and JMVA 2018
- Spectral bounds for networks model based clustering: Stochastic Block Model and Preference Frame Model Wan,M NIPS2016
- ► Previous work we build on
 - ► Convex relaxations for clustering MANY! here we use SDP for K-means Peng, Wei 2007
 - ▶ Transforming bound on $||X X'||_F$ into bound on d_{ME} M MLJ 2012
- Contrast with work on Clusterability and resilience, e.g. Ben-David, 2015, Bilu, Linial 2009
 - ▶ "Their" work: assume \exists stable \triangle , prove it can be found efficiently
 - ► This work: given ∆, prove it is stable

For what clustering paradigms can we obtain OI's?

"All" ways to map Δ to a matrix						
space	matrix	definition	size			
\mathcal{X}	$X(\Delta)$	$X_{ij} = 1/n_k \text{ iff } i, j \in C_k$	$n \times n$, block-diagonal			
$ ilde{\mathcal{X}}$	$ ilde{\mathcal{X}}(\Delta)$	$ ilde{\mathcal{X}}_{ij}=1$ iff $i,j\in\mathcal{C}_k$	$n \times n$, block-diagonal			
\mathcal{Z}	$Z(\Delta)$	$Z_{ik} = 1/\sqrt{n_k} \text{ iff } i \in C_k$	$n \times K$, orthogonal			

For what clustering paradigms can we obtain OI's?

"All" ways to map Δ to a matrix

space	matrix	definition	size
\mathcal{X}	$X(\Delta)$	$X_{ij} = 1/n_k \text{ iff } i, j \in C_k$	$n \times n$, block-diagonal
$ ilde{\mathcal{X}}$	$ ilde{\mathcal{X}}(\Delta)$	$ ilde{\mathcal{X}}_{ij}=1$ iff $i,j\in\mathcal{C}_k$	$n \times n$, block-diagonal
\mathcal{Z}	$Z(\Delta)$	$Z_{ik} = 1/\sqrt{n_k}$ iff $i \in C_k$	$n \times K$, orthogonal

Theorem

M NeurIPS 2018 If L has a convex relaxation involving one of $X, \tilde{\mathcal{X}}, Z$, then

(1) There exists a convex SS problem

$$(SS) \quad \delta = \min_{X' \in \mathbf{XX}_{\leq I}} \langle X(\Delta), X' \rangle \quad \text{(similarly for } \tilde{\mathcal{X}}, Z).$$

(2) From optimal δ an OI ε can be obtained, valid when $\varepsilon \leq p_{\min}$.

$$\begin{split} & X: X_{ij} = 1/n_k \operatorname{iff} i, j \in C_k & \quad \varepsilon = (K - \delta) p_{\max} \\ & \tilde{\mathcal{X}}: \tilde{\mathcal{X}}_{ij} = 1 \operatorname{iff} i, j \in C_k & \quad \varepsilon = \frac{\sum_{k \in [K]} n_k^2 + (n - K + 1)^2 + (K - 1) - 2\delta}{2p_{\min}} \\ & Z: Z_{ik} = 1/\sqrt{n_k} \operatorname{iff} i \in C_k & \quad \varepsilon = (K - \delta^2/2) p_{\max} \end{split}$$

Existence of guarantee depends only on space of convex relaxation.

Results for K-means clusterings

K=4 equal Gaussian clusters, $n=1024, ||\mu_k-\mu_l||=4\sqrt{2}\approx 5.67$ data for $\sigma = 0.9$ Values of ϵ vs cluster spread σ

Spectral=M ICML06, SDP=M NeurIPS 2018

Aspirin (C₉O₄H₈) molecular simulation data Chmiela et al. 2017

$$p_{\min} = .26$$

 $p_{\max} = .74$

K = 2

$$n = 2118$$
 $\varepsilon = 0.065$

Separation statistics

distance to own center over min center separation, colored by $\sigma.$

distance to second closest center over distance to own center, versus $\boldsymbol{\sigma}$

Results for Spectral Clustering by Normalized Cut

Spectral=M AISTATS05, SDP=M NeurIPS 2018

Stability and the selection of K Cheng,M,Harchaoui (in preparation)	
n_200_normal_False_cluster_equal_size_False_full_dimension_True_k_true_8	.pdf

Selecting K for hard clusterings

- based on statistical testing: the gap statistic (Tibshirani, Walther, Hastie, 2000)
- X-means [Pelleg and Moore, 2000] heuristic: splits/merges clusters based on statistical tests of Gaussianity
- ► Stability methods

44

The gap statistic

Idea

- for some cost \mathcal{L} compare $\mathcal{L}(\Delta_K)$ with its expected value under a null distribution
 - choose null distribution to have no clusters
 - ► Gaussian (fit to data)
 - uniform with convex support
 - ▶ uniform over K₀ principal components of data
 - ▶ null value = $E_{P_0}[\mathcal{L}_{K,n}]$ the expected value of the cost of clustering n points from P_0 into K clusters
- ► the gap

$$g(K) = E_{P_0}[\mathcal{L}_{K,n}] - \mathcal{L}(\Delta_K) = \mathcal{L}_K^0 - \mathcal{L}(\Delta_K)$$

- ► choose K* corresponding to the largest gap
- nice: it can also indicate that data has no clusters

Practicalities

- $\mathcal{L}_{K}^{0} = \mathcal{E}_{P_{0}}[\mathcal{L}_{K,n}]$ can rarely be computed in closed form (when P_0 very simple)
- otherwise, estimate \mathcal{L}_{K}^{0} be Monte-Carlo sampling i.e generate B samples from P_0 and cluster them
- if sampling, variance s_K^2 of estimate $\hat{\mathcal{L}}_K^0$ must be considered s_K^2 is also estimated from the samples
- ▶ selection rule: $K^* = \text{smallest } K \text{ such that } g(K) \ge g(K+1) s_{K+1}$ ▶ favored $\mathcal{L}^V(\Delta) = \sum_k \frac{1}{|C_k|} \sum_{i \in C_k} ||x_i \mu_k||^2 \approx \text{sum of cluster variances}$

Stability methods for choosing K

- ▶ like bootstrap, or crossvalidation
- ► Idea (implemented by [Ben-Hur et al., 2002]) for each K
 - 1. perturb data $\mathcal{D} \rightarrow \mathcal{D}'$
 - 2. cluster $\mathcal{D}' \rightarrow \Delta'_{K}$
 - 3. compare Δ_K , Δ_K' . Are they similar? If yes, we say Δ_K is **stable to perturbations**

Fundamental assumption If Δ_K is stable to perturbations then K is the correct number of clusters

- these methods are supported by experiments (not extensive)
- ▶ not YET supported by theory . . . see [von Luxburg, 2009] for a summary of the area

A stability based method for model-based clustering

- ► The algorithm of [Lange et al., 2004]
 - 1. divide data into 2 halves \mathcal{D}_1 , \mathcal{D}_2 at random
 - 2. cluster (by EM) $\mathcal{D}_1 \rightarrow \Delta_1, \theta_1$ 3. cluster (by EM) $\mathcal{D}_2 \rightarrow \Delta_2, \theta_2$
 - 4. cluster \mathcal{D}_1 using $\theta_2 \to \Delta_1$
 - 5. compare Δ_1, Δ_1^7
 - 6. repeat B times and average the results
 - repeat for each K
 - ▶ select K where Δ_1, Δ_1' are closest on average (or most times)

Ben-Hur, A., Elisseeff, A., and Guyon, I. (2002).

A stability based method for discovering structure in clustered data.

In Pacific Symposium on Biocomputing, pages 6-17.

Charikar, M. and Guha, S. (1999).

Improved combinatorial algorithms for the facility location and k-median problems. In 40th Annual Symposium on Foundations of Computer Science, pages 378–388.

Lange, T., Roth, V., Braun, M. L., and Buhmann, J. M. (2004). Stability-based validation of clustering solutions.

Neural Comput., 16(6):1299–1323.

Meilă, M. (2006). The uniqueness of a good optimum for K-means.

In Moore, A. and Cohen, W., editors, *Proceedings of the International Machine Learning Conference (ICML)*, pages 625–632. International Machine Learning Society.

Pelleg, D. and Moore, A. (2000).

X-means: Extending K-means with efficient estimation of the number of clusters. In Bratko, I. and Džeroski, S., editors, *Proceedings of the 17th International Conference on Machine Learning*, pages 727–734, San Francisco, CA. Morgan Kaufmann.

von Luxburg, U. (2009).

Clustering stability: An overview.

Foundations and Trends in Machine Learning, 2(3):253-274.