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Prediction problems by the type of output

The “learning” paradigm and vocabulary

The Nearest-Neigbor and kernel predictors

Linear predictors
Least squares regression
Linear Discriminant Analysis (LDA)
QDA (Quadratic Discriminant Analysis)
Logistic Regression
The Perceptron algorithm

Classification and regression tree(s) (CART)

The Naive Bayes classifier

Reading HTF Ch.: 2.3.1 Linear regression, 2.3.2 Nearest neighbor, 4.1–4 Linear classification,
6.1–3. Kernel regression, 6.6.2 kernel classifiers, 6.6.3 Naive Bayes, 9.2 CART, 11.3 Neural
networks, Murphy Ch.: 1.4.2 nearest neighbors, 1.4.4 linear regression, 1.4.5 logistic regression,
3.5 and 10.2.1 Naive Bayes,4.2.1–3 linear and quadratic discriminant, 14.7.3– kernel regression,
locally weighted regression, 16.2.1–4 CART, (16.5 neural nets)
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Prediction problems by the type of output

In supervised learning, the problem is predicting the value of an output (or response – typically
in regression, or label – typically in classification) variable Y from the values of some observed
variables called inputs (or predictors, features, attributes) (X1, X2, . . .Xd ) = X . Typically we
will consider that the input X ∈ Rd .

Prediction problems are classified by the type of response
Y ∈ Y:

I regression: Y ∈ R
I binary classification: Y ∈ {−1,+1}
I multiway classification: Y ∈ {y1, . . . ym} a finite set
I ranking: Y ∈ Sp the set of permutations of p objects
I multilabel classification Y ⊆ {y1, . . . ym} a finite set (i.e. each X can have several labels)
I structured prediction Y ∈ ΩV the state space of a graphical model over a set of [discrete]

variables V
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Example (Regression.)

I Y is the proportion of high-school students who go to college from a given school in given
year. X are school attributes like class size, amount of funding, curriculum (note that they
aren’t all naturally real valued), median income per family, and other inputs like the state
of the economy, etc. Note also that Y ∈ [0, 1] here.

I Y ≥ 0 is the income of a person, and Xj are attributes like education, age, years out of
school, skills, past income, type of employment.
Economic forecasts are another example of regression. Note that in this problem as well as
in the previous, the Y in the previous period, if observed, could be used as a predictor
variable for the next Y . This is typical of structured prediction problems.

I Weather prediction is typically a regression problem, as winds, rainfall, temperatures are
continuous-valued variables.

I Predicting the box office totals of a movie. What should the inputs be?
I Predicting perovskite degradation. Perovskites are a type of crystal considered promising

for the fabrication of solar cells. In standard use, such a material must have a life time Y
of 30 years. How can one predict which material will last that long without waiting for 30
years?
Y is time to degradation, Xj are material composition, experimental conditions, and
measurements of initial values of physical parameters.
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Example ((Anomaly) detection.)

This is a binary classification problem. Y ∈ {normal, abnormal}. For instance, Y could be
“HIV positive” vs “HIV negative” (which could be abbreviated as “+”, “-”) and the inputs X
are concentration of various reagents and lymph cells in the blood.
Anomaly detection is a problem also in artificial systems, as any device may be functioning
normally or not. There are also more general detection problems, where the object detected is
of scientific interest rather than an “alarm”: detecting Gamma-ray bursts in astronomy,
detecting meteorites in Antarctica (a robot collects rocks lying on the ice and determines if the
rock is terrestrial or meteorite). More recently, Artificial Intelligence tasks like detecting
faces/cars/people in images or video streams have become possible.
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Example (Multiway classification.)

Handwritten digit classification: Y ∈ {0, 1, . . . 9} and X=black/white 64× 64 image of the
digit. For example, ZIP codes are being now read automatically off envelopes.
OCR (Optical character recognition). The task is to recognized printed characters
automatically. X is again a B/W digital image, Y ∈ {a− z,A− Z , 0− 9, ”.”, ”, ”, . . .}, or
another character set (e.g. Chinese).

Example (Diagnosis)

Diagnosis is multiway classification + anomaly detection. Y = 0 means “normal/healthy”,
while Y ∈ {1, 2, . . .} enumerates failure modes/diseases.



S
T

A
T

3
9

1
G

o
o

d
N

o
te

:
L

ec
tu

re
I

P
re

d
ic

to
r

zo
o

1
0

/
4

/
2

1

7

Example (Structured prediction.)

Speech recognition. X is a segment of digitally recorded speech, Y is the word corresponding
to it. Note that it is not trivial to segment speech, i.e to separate the speech segment that
corresponds to a given word. These segments have different lengths too (and the length varies
even when the same word is spoken).
The classification problem is to associate to each segment X of speech the corresponding word.
But one notices that the words are not indepedent of other neighboring words. In fact, people
speak in sentences, so it is natural to recognize each word in dependence from the others.
Thus, one imposes a graphical model structure on the words corresponding to an utterance
X 1,X 2, . . .Xm. For instance, the labels Y 1:m could form a chain Y 1 − Y 2 − . . .Ym. Other
more complex graphical models structures can be used too.
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The “learning” paradigm and vocabulary

I predictor = a [deterministic] function that associates to an input x a corresponding
ŷ = f (x).

I A predictor is a kind of model (not yet a statistical model, though).
I model class F = the set of possible predictors for a problem

I Training
I choose the “best” predictor in F (for a particular task)
I based on a sample or (training set) of labeled data

D = {(x1
, y1), (x2

, y2), . . . (xn
, yn)}

I n is the sample size.
I (x i , y i ) are examples
I In binary classification labels are conventionally in {±} (or {±1}). We use the terms negative,

respectively positive examples
I Prediction (also called testing)

I Given predictor f , and new input x , calculate

ŷ = f (x)
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ŷ = f (x)



S
T

A
T

3
9

1
G

o
o

d
N

o
te

:
L

ec
tu

re
I

P
re

d
ic

to
r

zo
o

1
0

/
4

/
2

1

9

Prediction – the workflow

Training phase
I Get labeled data D = {(x1, y1), (x2, y2), . . . (xn, yn)}
I Choose model class F
I Learn/estimate/fit the model f ∈ F from data D

I Here the goal is to find f that predicts y1,...N well
I How to do it is the learning algorithm and depends on F

[Validation phase How good is really this f ?]

“Testing” phase=Prediction
I now you have a predictor f , use it
I whenever new, unlabeled x comes in, output ŷ = f (x)
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Prediction – the workflow

Training phase
I Get labeled data D = {(x1, y1), (x2, y2), . . . (xn, yn)}
I Choose model class F
I Learn/estimate/fit the model f ∈ F from data D

I Here the goal is to find f that predicts y1,...N well
I How to do it is the learning algorithm and depends on F

[Validation phase How good is really this f ?]

Learning Theory
I How to guarantee statistically that f predicts new y(x) well

“Testing” phase=Prediction
I now you have a predictor f , use it
I whenever new, unlabeled x comes in, output ŷ = f (x)



S
T

A
T

3
9

1
G

o
o

d
N

o
te

:
L

ec
tu

re
I

P
re

d
ic

to
r

zo
o

1
0

/
4

/
2

1

10

The “sign trick” for transforming a regressor into a classifier

The sign function sgn(y) = y/|y | if y 6= 0 and 0 iff y = 0 turns a real valued variable Y into a
discrete-valued one. This function is used to allow one to construct real-valued classifiers. In
these classifiers, the model f (x) is a real-valued function, and the prediction ŷ is given by
sgn(f (x)).
Note that in a vanishingly small fraction of cases, when the value of f (x) is exactly 0, no label
will be assigned to the input x .
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Decision regions, decision boundary of a classifier

Let f (x) be a classifier (not necessarily binary)

I f (x) takes only a finite set of values
I The decision region associated with class y = the region in X space where f takes value

y , i.e. Dy = {x ∈ Rd , f (x) = y} = f −1(y).
I The boundaries separating the decision regions are called decision boundaries.

I For a binary classifier, we have two decision regions, D+ and D−. By convention f (x) = 0
on the decision boundary.

I For binary classifier with real valued f (x) (i.e ŷ = sgnf (x)) we define
D+ = {x ∈ Rd , f (x) > 0}, D− = {x ∈ Rd , f (x) < 0} and the decision boundary
{x ∈ Rd , f (x) = 0}
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The Nearest-Neighbor predictor

I 1-Nearest Neighbor The label of a point x is assigned as follows:
1. find the example x i that is nearest to x in D (in Euclidean distance)

2. assign x the label y i , i.e.

ŷ(x) = y i

I K-Nearest Neighbor (with K = 3, 5 or larger)

1. find the K nearest neighbors of x in D: x i1,...iK

2. I for classification f (x) = the most frequent label among the K neighbors
(well suited for multiclass)

I for regression f (x) = 1
K

∑
i neighbor of x y i = mean of neighbors’ labels

I No parameters to estimate!
I No training!
I But all data must be stored (also called memory-based learning)
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Kernel regression and classification

I Like the K -nearest neighbor but with “smoothed” neighborhoods
I The predictor

f (x) =
n∑

i=1

βib(x , x i )y i (1)

where βi are coefficients

I Intuition: center a “bell-shaped” kernel function b on each data point, and obtain the
prediction f (x) as a weighted sum of the values y i , where the weights are βib(x , x i )

I Requirements for a kernel function b(x , x ′)
1. non-negativity
2. symmetry in the arguments x, x′

3. optional: radial symmetry, bounded support, smoothness

I A typical kernel function is the Gaussian kernel (or Radial Basis Function (RBF))

b(z) ∝ e−z2/2 (2)

bh(x , x ′) ∝ e
− ||x−x′||2

2h2 with h = the kernel width (3)
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Regression example

A special case in wide use is the Nadaraya-Watson regressor

f (x) =

∑n
i=1 b

(
||x−x i ||

h

)
y i∑n

i=1 b
(
||x−x i ||

h

) . (4)

In this regressor, f (x) is always a convex combination of the y i ’s, and the weigths are
proportional to bh(x , x i ).
The Nadaraya-Watson regressor is biased if the density of PX varies around x .
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Local Linear Regression

To correct for the bias (to first order) one can estimate a regression line around x .

1. Given query point x
2. Compute kernel bh(x , x i ) = wi for all i = 1, . . .N

3. Solve weighted regression minβ,β0

∑d
i=1 wi

(
y i − βT x i − β0

)2
to obtain β, β0

( β, β0 depend on x through wi )
4. Calculate f (x) = βT x + β0

Exercise Show that Nadaraya-Watson solves a local linear regression with fixed β = 0
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Kernel binary classifiers

I Obtained from Nadaraya-Watson by setting y i to ±1.
I Note that the classifier can be written as the difference of two non-negative functions

f (x) ∝
∑
i :y i=1

b

(
||x − x i ||

h

)
−

∑
i :y i=−1

b

(
||x − x i ||

h

)
. (5)



S
T

A
T

3
9

1
G

o
o

d
N

o
te

:
L

ec
tu

re
I

P
re

d
ic

to
r

zo
o

1
0

/
4

/
2

1

17

(Radial) Basis Function predictors

A regressor similar to the kernel predictor is

f (x) =
M∑
i=1

b(x , ξi )βi (6)

The difference is that the “bumps” are not placed on data points, but at a set of M points ξi

to be determined.
The f in (6) is an example of function basis (or basis functions approach to prediction. In this
approach, we choose a set B = {b( ; ξ), ξ ∈ Ξ} called a basis or a dictionary. B is
parametrized by ξ ∈ Ξ; Ξ can be finite or infinite. The elements of B are called basis
functions. The predictor class F is the set of linear combinations of elements of B.

Example

I Fourier basis, wavelet bases
I spline families
I two layer linear output neural networks
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Linear predictors

One can classify prediction methods by the type of predictor (i.e. by the type of model class F).
The linear predictor is defined as

f (x) = βT x (7)

where Y ∈ R, X ∈ Rd and β ∈ Rd is a vector of parameters.
Model class is F = {β ∈ Rd} the set of all linear functions over Rd .
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Transforming categorical inputs into real values

I if Xj takes two values (e.g “yes”, “no”), map it to {±1} or {0, 1} ⊂ R.
I discrete multivariate inputs

I Let Xj take values in Ωj = {0, . . . r − 1}.
I One defines the r − 1 binary variables X̃jk = 1[]

Xj = k, k = 1 : r − 1. The variable Xj is replaced

with X̃jk , k = 1 : r − 1
I the parameter βj with r − 1 parameters βj1 . . . βj, r − 1 representing the coefficients of

X̃j1, . . . X̃j,r−1.

This substitution is widely used to parametrize any function of a discrete variable as a linear function

Example: The demographic variable Race takes values in { African, Asian, Caucasian, . . .}; the

corresponding parameters in the model will be β̂Asian, β̂Caucasian, . . ..
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The intercept as a slope

I Sometimes we like f to have an intercept f (x) = βT x + β0. Such a function is affine, not
linear, and not homogeneous. Here is a trick to get the best of both worlds.

I Add a dummy input x0 ≡ 1 to x . Then its coefficient β0 is the intercept.

x ←


x0

x1

. . .
xn

 ∈ Rn+1 β ←


β0

β1

. . .
βn

 ∈ Rn+1 f (x) = βT x (8)

I in classification, β0 is called threshold or bias term
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The linear predictor as classifier

The linear predictor can be used for [binary] classification with the sign trick above.

f (x) = sgnβT x (9)

Later in the course we will see a natural way to use real-valued predictors for multi-way
classification.
What is the meaning of the β parameter for (9)?
Below we give three possible “interpretations” for β, which correspond three different ways to
construct a linear classifier for a problem.
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I Problem: how to fit a linear predictor to data? (aka learn it)
I Now: examples of what one can do
I Later lectures: larger view of the estimation problem for predictors
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(Linear) least squares regression

I define data matrix or (transpose) design matrix

X =


(x1)T

(x2)T

. . .
(x i )T

. . .
(xn)T

 ∈ RN×n and Y =


y1

y2

. . .
yn

 , E =


ε1

ε2

. . .
εd

 ∈ Rd

I Then we can write
Y = Xβ + E

I The solution β̂ is chosen to minimize the sum of the squared errors∑d
i=1(εi )2 =

∑d
i=1(y i − βT x i )2 = ||E ||2

β̂ = argmin
β∈Rd

d∑
i=1

(y i − βT xi )
2

I This optimization problem is called a least squares problem. Its solution is

β̂ = (XT X)−1XTY (10)

I Underlying statistical model y = βT x + ε, ε ∼ N(0, σ2) (and i.i.d. sampling of
(x1:N , y1:N) of course).

Then β̂ from (10) is the Maximum Likelihood (ML) estimator of the parameter β.
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Linear Discriminant Analysis (LDA)

Fitting a linear predictor for classification, first approach. (We are in the binary classification case)

I Assume each class is generated by a Normal distribution

PX|Y (x|+) = N (x ;µ+,Σ+), PX|Y (x|−) = N (x ;µ−,Σ−) and PY (1) = p

I Given x , what is the probability it came from class + ?

PY |X (+|x) =
PY (1)PX|Y (x|+)

PY (1)PX|Y (x|+) + PY (−)PX|Y (x| +−)
and PY |X (−|x) = 1−PY |X (+|x) (11)

This formula is true whether the distributions PX|Y are normal or not.
I We assign x to the class with maximum posterior probability.

ŷ(x) = argmax
y∈{±1

PY |X (y |x) (12)

This too, holds true whether the distributions PX|Y are normal or not.
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LDA – continued

Now we specialize to the case of normal class distribution. We assume in addition that
Σ+ = Σ− = K−.

I Decision rule: ŷ = 1 iff PY |X (+|x) > PY |X (−|x)
I or equivalently iff

0 ≤ f (x) = ln
PY |X (+|x)

PY |X (−|x)
(13)

= ln
p

1− p
−

1

2

[
xTKx − 2µT+Kx + µT+Kµ+

]
−

1

2

[
xTKx − 2µT−Kx + µT−Kµ−

]
(14)

= [K(µ+ − µ−)]T x + ln
p

1− p
+
µT−Kµ− − µT+Kµ+

2
(15)

= βT x + β0 (16)

I The above is a linear expression in x , hence this classifier is called (Fisher’s) Linear
Discriminant

I Note that if we change the variables to x ←
√
Kx , µ± ←

√
Kµ±, and if we shift the

origin to
µ++µ−

2
(16) becomes

2µT+x + ln
p

1− p
(17)

This has a geometric interpretation
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And QDA (Quadratic Discriminant Analysis)

I If we do not assume Σ+ = Σ− then (13) is a quadratic function of x Exercise Plot the curve

f (x) = 0 in (13) for various data sets in two dimensions. What kind of curves do you observe? Can the

decision region be bounded?

f (x) =

= ln
p

1− p
−

1

2

[
x −T Σ−+ x − 2µT+Σ−+ x + µT+Σ−+µ+

]
(18)

−
1

2

[
xT Σ−−x − 2µT−Σ−−x + µT−Σ−−µ−

]
(19)
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Logistic Regression

Fitting a linear predictor for classification, another approach.
Let f (x) = βT x model the log odds of class 1

f (X ) =
P(Y = 1|X )

P(Y = −1|X )
(20)

Then
I ŷ = 1 iff P(Y = 1|X ) > P(Y = −1|X )

I just like in the previous case! so what’s the difference?

I Answer: We don’t assume each class is Gaussian, so we are in a more general situation than LDA
I What is p(x) = P(Y = 1|X = x) under our linear model?

ln
p

1− p
= f ,

p

1− p
= e f , p =

ef

1 + e f
1− p =

1

1 + e f
(21)

An alternative “symmetric” expression for p, 1− p is

p =
ef /2

ef /2 + e−f /2
, 1− p =

e−f /2

ef /2 + e−f /2
. (22)
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Estimating the parameters by Max Likelihood

I Denote y∗ = (1− y)/2 ∈ {0, 1}
I The likelihood of a data point is PY |X (y |x) = ey∗ f (x)

1+ef (x)

I The log-likelihood is l(β; x) = y∗f (x)− ln(1 + ef (x))

I ∂l
∂f

= y∗ − ef

1+ef
= y∗ − 1

1+e−f

This is a scalar, and sgn ∂l
∂f

= y

I We have also ∂f (x)
∂β

= x
I Now, the gradient of l w.r.t the parameter vector β is

∂l

∂β
=

∂l

∂f

∂f

∂β
=

(
y∗ −

1

1 + e−f (x)

)
x (23)

Interpretation: The infinitezimal change of β to increase log-likelihood for a single data
point is along the direction of x , with the sign of y

I Log-likelihood of the data set D

l(β;D) =
1

N

d∑
i=1

l(β; (x i , y i )) (24)

I The optimal β maximizes l(β;D) and therefore

∂l(β;D)

∂β
=

1

N

d∑
i=1

(
y i
∗ −

1

1 + e−f (x i )

)
x i = 0 (25)

I Unfortunately, (25) does not have a closed form solution!
We maximize the (log)likelihood by iterative methods (e.g. gradient ascent) to obtain the
β of the classifier.

I this iterative estimation converges asymptotically
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β of the classifier.

I this iterative estimation converges asymptotically



S
T

A
T

3
9

1
G

o
o

d
N

o
te

:
L

ec
tu

re
I

P
re

d
ic

to
r

zo
o

1
0

/
4

/
2

1

29

The gradient – an alternative formula

I We use the original y values instead of y∗
I Note that

PY |X (y |x) =
1

1 + e−yf (x)
= φ(yf (x)) (26)

I with φ′ = φ(1− φ)

I Then,
∂ ln PY |X (y|x)

∂f
= ∂ lnφ(yf )

∂f
= yφ(yf )(1−φ(yf )

φ(yf )
= y(1− φ(yf )

I The gradient of the log-likelihood of the data is now

∂l(β;D)

∂β
=

1

N

d∑
i=1

1− φ(eyf (x i ))︸ ︷︷ ︸
PY |X (yi |x i ,β)

 yix
i (27)
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The Perceptron algorithm

Fitting a linear predictor for classification, third approach.
Define f (x) = βT x and find β that classifies all the data correctly (when possible).
Perceptron Algorithm

Input labeled training set D
Initialize β = 0, for all i , x i → x i

||x i || (normalize the inputs)

Repeat until no more mistakes
for i = 1 : N

1. if sgn(βT x i ) 6= y i (a mistake)

β ← β + y ix i

(Other variants exist)
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The perceptron algorithm and linearly separable data

I D is linearly separable iff there is a β∗ so that sgnβT
∗ x

i = y i for all i = 1, . . . N.
If one such β∗ exists, then there are an infinity of them

Theorem
Let D be a linearly separable data set, and define

γ = min
i

|βT
∗ x

i |
||β∗||||x i ||

. (28)

Then, the number of mistakes made by the Perceptron algorithm is at most 1/γ2.

I Note that if we scale the examples to have norm 1, then γ is the minimum distance to the
hyperplane βT

∗ x = 0 in the data set.

Exercise Show that if D is linearly separable, the scaling x i → xi

||xi ||
leaves it linearly separable.

I If D is not linearly separable, the algorithm oscillates indefinitely.
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Classification and regression trees (CART)

I A classification tree or (decision tree) is built recursively by splitting the data with
hyperplanes parallel to the coordinate axes.

I At each split, try to separate + examples from − examples as well as possible.
I Eventually, all the regions will be “pure”, i.e. will contain examples from one class only.

I Classification trees can be used in multiway classification as well (there we try to create a
pure region on at least one side of the split)

I A regression tree uses the same principle for regression
here we try to obtain regions where the outputs are nearly the same
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Hierarchical partitions

I a hierarchical partition T of Rd is a set of regions {Rq}, so that Rd =
⋃

q Rq and between
any two Rq ,Rq′ we have either

Rq ∩ Rq′ = ∅, or Rq ⊂ Rq′ or Rq′ ⊂ Rq . (29)

I In a CART, the partitions are usually chosen to be axis-aligned, i.e.
Rq = {x | ± xj1 ” > ”τ1, ±xj2 ” > ”τ2, . . .± xjl ” > ”τl} where ” > ” stands for one of > or

≥, so that the union of all regions covers Rd .
I The number of inequalities l defining the region is called the level of the region.
I Rq is a leaf of T iff there is no other Rq′ included in it.

Example (A hierarchical partition with 3 levels over R2)
Level 1: R1 = {x | x2 > 3},

R2 = {x | x2 ≤ 3}
Level 2: R3 = {x | x2 > 3, x1 ≥ −2},

R4 = {x | x2 > 3, x1 < −2},
R5 = {x | x2 ≤ 3, x1 > 0},
R6 = {x | x2 ≤ 3, x1 ≤ 0}

Level 3: R7 = {x | x2 > 3, x1 ≥ −2, x1 < 4},
R8 = {x | x2 > 3, x1 ≥ 4},
R9 = {x | x2 < 3, x1 ≥ 1}
R10 = {x | x2 ≤ 3, x1 ≤ 0, x2 > −1},
R11 = {x | x2 ≤ −1, x1 ≤ 0},
R12 = {x | x2 < 3, x1 > 0, x1 < 1}

The leaves are R4,R7, . . . R12. Not all leaves are at the same level; for example R4 is at level 2.
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Purity

I Natural ways to set yq based on the data, once the partition T has been fixed:

I denote Yq = {y i | x i ∈ Rq, i = 1 : N} the set of labels at a leaf Rq
I Regression yq = average of Yq
I Classification yq = majority label of Yq

I a leaf Rq is pure if all labels are the same, i.e. if |Yq | = 1
I criteria for the (im)purity of a leaf Rq

I Regression impurity = sample variance of Yq
I Classification let pq be the frequency of yq in Yq

impurity =

 Misclassification error 1− pq
Gini pq(1− pq)
Entropy pq ln pq + (1− pq) ln(1− pq)

(30)

These measures generalize naturally to the multiclass setting.
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“Learning” a CART

A standard algorithm for building a decision tree works recursively in top-down fashion.

Input Training set D of size n
Initialize with a tree with only one region, that contains all the data

1.Repeat until all leaves are pure (or until desired purity is attained in all leaves)
2. Find the “optimal” split over all leaves Rq and all possible splits of Rq .

“Optimal” is defined in terms on purity (e.g split the least pure leaf, find the split that
makes one of the new leaves pure)

3. Perform the “optimal” split and add the two new leaves to the tree

This is a greedy algorithm. Sometimes, trees obtained this way are pruned back to smaller sizes.
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A decision tree over D is not unique

Same dataset D, two different trees. Both classify the sample D perfectly.
T1 T2 differences of T1, T2

But they produce different decision regions.
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The Naive Bayes classifier

I Idea: Assume the distribution in each class factors

PX |Y=y =
d∏

j=1

PXj |Y=y (31)

In other words, the n attributes are independent given the class y .
I Then, PY |X is given by Bayes’ rule as follows

PY |X (+1|x) =
PY (1)PX |Y (x |+ 1)

PY (1)PX |Y (x |+ 1) + PY (−1)PX |Y (x | − 1)
(32)

I The advantage of this classifier is in its simplicity
1. for each class y , and each attribute j estimate PXj |Y=y

2. for each class y , estimate PY (y).
(works for multiclass too!) Exercise Write the NB formula below for multiclass.

I For binary classification (as in LDA), we obtain

f (x) = ln
PY |X (+1|x)

PY |X (−1|x)
= ln

p

1− p
+

d∑
j=1

ln
PXj |Y (xj |+ 1)

PXj |Y (xj | − 1)
(33)

This is an additive model (see later) and in some cases it can be a linear model.
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