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An elementary analysis

Bias, Variance and h for x € R
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Kernel regression by Nadaraya-Watson

;7:1 b (HX;X H>yl

y(x) = — (1)
S b (HX hx H)
b< Hx—x"n)
Let w; = —h,
Zn/—l b( HX_hXI H)

Assumptions

AO For simplicity, in this analysis we assume x € R.

Al There is a true smooth! function f(x) so that
y = f(x)+e, ()

where € is sampled independently for each x from a distribution P, with Ep_[¢] =0,
Varp_(e) = o2.

A2 The kernel b(z) is smooth, [; b(z)dz =1, [; zb(z) =0, and we denote
02 = [p 22b(z)dz, v} = [; b*(z)dz.

In this first analysis, we consider that the values x, x
only in N,

LN are fixed; hence, the randomness is

Lwith continuous derivatives up to order 2



Expectation of §(x) — a simple analysis

Expanding f in Taylor series around x we obtain

F0) = £+ P00 =)+ 0 (2 4 o((xd — 29?) )
We also have i ) i
Y= )+ < @)

We now write the expectation of y(x) from (1), replacing in it y’ and f(x') as above. What we
would like to happen is that this expectation equals f(x). Let us see if this is the case.

Epp [y(x)] = Epr [Z Wiy'] = Epo [ W (f(Xi) +€i) ©)
= i=1
Zw,f(x +Zw,f(x xI— x +Z f//( )2+Epg Zwiei:|
- =il
= )+ 00 Wil — )+ TS o 2 (7)
% =il i=1
bias

In the above, the expressions in red depend of f, those in blue depend on x and x:N




Qualitative analysis of the bias terms

The first order term f/(x) Y7, wi(x” — x) is responsible for border effects.
The second order term smooths out sharp peaks and valleys.

-
g
=
2
9
1
S
s
2
]
2
=]
°
S
o
—




-
g
=
2
]
1
S
s
2
°
Z
S
°
o
o
—

Bias, Variance and h for x € R
2
The bias of y at x is defined as Epp Epn [§(x) — f(x)].
fr(x)px(x) ()

Erg £y [9() — )] = #of (=080 + T09 ) 1 o) (®)

The variance y at x is defined as Varpp pn(9(x)).

2
Varpy P(9(x)) = %02+o (%) (9)

The MSE (Mean Squared Error) is defined as Epy Epn [(f/(x) — f(x))z], which equals

2
+ 252, (10

MSE(x) = bias® + variance’ = h*o} .
n

(o + =7

2After []
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Optimal selection of h

If the MSE is integrated over R we obtain the MISE= [, MSE(x)px(x)dx.
The kernel width h can be chosen to minimize the MISE, for fixed f, px and b.
We set to 0 the partial derivative

OMISE (m
o = h <.) -z =0 (11)

It follows that h° o %, or

1

h Y (12)
In d dimensions, the optimal h depends on the sample size n as
1
h o (13)
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