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An elementary analysis

Bias, Variance and h for x ∈ R
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Kernel regression by Nadaraya-Watson

ŷ(x) =

∑n
i=1 b

(
||x−x i ||

h

)
y i∑n

i=1 b
(
||x−x i ||

h

) (1)

Let wi =
b

(
||x−xi ||

h

)
∑n

i′=1
b

(
||x−xi

′ ||
h

) .

Assumptions

A0 For simplicity, in this analysis we assume x ∈ R.
A1 There is a true smooth1 function f (x) so that

y = f (x) + ε, (2)

where ε is sampled independently for each x from a distribution Pε, with EPε [ε] = 0,
VarPε (ε) = σ2.

A2 The kernel b(z) is smooth,
∫
R b(z)dz = 1,

∫
R zb(z) = 0, and we denote

σ2
b =

∫
R z2b(z)dz, γ2

b =
∫
R b2(z)dz.

In this first analysis, we consider that the values x , x1:N are fixed; hence, the randomness is
only in ε1:N .

1with continuous derivatives up to order 2
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Expectation of ŷ(x) – a simple analysis

Expanding f in Taylor series around x we obtain

f (x i ) = f (x) + f ′(x)(x i − x) +
f ′′(x)

2
(x i − x)2 + o((x i − x)2) (3)

We also have
y i = f (x i ) + εi . (4)

We now write the expectation of ŷ(x) from (1), replacing in it y i and f (x i ) as above. What we
would like to happen is that this expectation equals f (x). Let us see if this is the case.

EPn
ε

[ŷ(x)] = EPn
ε

[
n∑

i=1

wiy
i

]
= EPn

ε

[
n∑

i=1

wi

(
f (x i ) + εi

)]
(5)

=
n∑

i=1

wi f (x) +
n∑

i=1

wi f
′(x)(x i − x) +

n∑
i=1

wi
f ′′(x)

2
(x i − x)2 + EPn

ε

[
n∑

i=1

wiε
i

]
︸ ︷︷ ︸

=0]

(6)

= f (x) + f ′(x)
n∑

i=1

wi (x
i − x) +

f ′′(x)

2

n∑
i=1

wi (x
i − x)2

︸ ︷︷ ︸
bias

(7)

In the above, the expressions in red depend of f , those in blue depend on x and x1:N .
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Qualitative analysis of the bias terms

The first order term f ′(x)
∑n

i=1 wi (x
i − x) is responsible for border effects.

The second order term smooths out sharp peaks and valleys.
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Bias, Variance and h for x ∈ R
2

The bias of ŷ at x is defined as EPn
X
EPn

ε
[ŷ(x)− f (x)].

EPn
X
EPn

ε
[ŷ(x)− f (x)] = h2σ2

b

(
f ′(x)p′X (x)

pX (x)
+

f ′′(x)

2

)
+ o(h2) (8)

The variance ŷ at x is defined as VarPn
X
Pn
ε

(ŷ(x)).

VarPn
X
Pn
ε (ŷ(x)) =

γ2

nh
σ2 + o

(
1

nh

)
. (9)

The MSE (Mean Squared Error) is defined as EPn
X
EPn

ε

[
(ŷ(x)− f (x))2

]
, which equals

MSE(x) = bias2 + variance2 = h4σ4
b

(
f ′(x)p′X (x)

pX (x)
+

f ′′(x)

2

)
+
γ2
b

nh
σ2 + . . . (10)

2After []
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Optimal selection of h

If the MSE is integrated over R we obtain the MISE=
∫
R MSE(x)pX (x)dx .

The kernel width h can be chosen to minimize the MISE, for fixed f , pX and b.
We set to 0 the partial derivative

∂MISE

∂h
= h3

( )
−
( )
nh2

= 0. (11)

It follows that h5 ∝ 1
n

, or

h ∝
1

n1/5
. (12)

In d dimensions, the optimal h depends on the sample size n as

h ∝
1

n1/(n+4)
. (13)


	An elementary analysis
	Bias, Variance and h for xR

