Lecture Notes III - Neural Networks

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2021

Two-layer Neural Networks

Multi-layer neural networks

A zoo of multilayer networks

Reading HTF Ch.: 11.3 Neural networks, Murphy Ch.: (16.5 neural nets), Deep Learning Book (Goodfellow, Bengio, Courville) 6.1-4, ResNet 7.6, ConvNet 9., Autoencoders 14.1, Dive Into Deep Learning 4.1-4.3.

Two-layer Neural Networks

- The activation function (a term borrowed from neuroscience) is any continuous, bounded and strictly increasing function on \mathbb{R}. Almost universally, the activation function is the logistic (or sigmoid)

$$
\begin{equation*}
\phi(u)=\frac{1}{1+e^{-u}} \tag{1}
\end{equation*}
$$

because of its nice additional computational and statistical properties.

- We build a two-layer neural network in the following way:
Inputs
x_{k}
$k=1: n$
Bottom layer ${ }^{1}$
$z_{j}=\phi\left(w_{j}^{T} x\right)$
$j=1: m, w_{j} \in \mathbb{R}^{d}$
Top layer
$f=\phi\left(\beta^{\top} z\right) \quad \beta \in \mathbb{R}^{m}$
Output
$f \quad \in[0,1]$

In other words, the neural network implements the function

$$
\begin{equation*}
f(x)=\sum_{j=1}^{m} \beta_{j} z_{j}=\sum_{j=1}^{m} \beta_{j} \phi\left(\sum_{k=1}^{m} w_{k j} x_{k}\right) \in(-\infty, \infty) \tag{2}
\end{equation*}
$$

Note that this is just a linear combination of logistic functions.

[^0]
Output layer options

- linear layer as in (2) $f=\sum_{j} \beta_{j} z_{j}$
- logistic layer: in classification $f(x) \in[0,1]$ is interpreted as the probability of the + class.

$$
\begin{equation*}
f(x)=\phi\left(\sum_{j=1}^{m} \beta_{j} z_{j}\right)=\phi\left(\sum_{j=1}^{m} \beta_{j} \phi\left(\sum_{j} w_{k j} x_{k}\right)\right) \tag{3}
\end{equation*}
$$

- softmax layer in multiway classification

The softmax function $\phi(z): \mathbb{R}^{r} \rightarrow(0,1)^{r}$

$$
\begin{equation*}
\phi_{k}(u)=\frac{e^{u_{k}}}{\sum_{j=1}^{m} e^{u_{j}}} \tag{4}
\end{equation*}
$$

- Properties
- $\sum_{j=1}^{m} \phi_{j}(u)=1$ for all u
- for $u_{k} \gg u_{j}, j \neq k \phi_{k}(u) \rightarrow 1$.
- derivatives $\frac{\partial \phi_{j}}{\partial u_{k}}=\phi_{k} \delta_{j k}-\phi_{j} \phi_{k}$

Generalized Linear Models (GLM)

A GLM is a regression where the "noise" distribution is in the exponential fami ly.

- $y \in \mathbb{R}, y \sim P_{\theta}$ with

$$
\begin{equation*}
P_{\theta}(y)=e^{\theta y-\ln \psi(\theta)} \tag{5}
\end{equation*}
$$

- the parameter θ is a linear function of $x \in \mathbb{R}^{d}$

$$
\begin{equation*}
\theta=\beta^{T} x \tag{6}
\end{equation*}
$$

- We denote $E_{\theta}[y]=\mu$. The function $g(\mu)=\theta$ that relates the mean parameter to the natural parameter is called the link function.
The log-likelihood (w.r.t. β) is

$$
\begin{equation*}
I(\beta)=\ln P_{\theta}(y \mid x)=\theta y-\psi(\theta) \quad \text { where } \theta=\beta^{T} x \tag{7}
\end{equation*}
$$

and the gradient w.r.t. β is therefore

$$
\begin{equation*}
\nabla_{\beta} I=\nabla_{\theta} / \nabla_{\beta}\left(\beta^{T} x\right)=(y-\mu) x \tag{8}
\end{equation*}
$$

This simple expression for the gradient is the generalization of the gradient expression you obtained for the two layer neural network in the homework. [Exercise: This means that the sigmoid function is the inverse link function defined above. Find what is the link function that corresponds to the neural network.]

Hidden layer options

- sigmoidal functions ϕ, tanh
- hinge functions RELU $=\max (u, 0)$, softplus $=\ln \left(1+e^{u}\right)$

Multi-layer/Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.
Each layer is a linear combination of the outputs from a previous layer (a multivariate operation), followed by a non-linear transformation via the logistic function ϕ. Let $x \equiv x^{(0)}, y \equiv x^{(L)}, m_{0}=d, m_{L}=\operatorname{dim} y$ (typicall 1) and define the recursion:

$$
\begin{equation*}
x_{j}^{(I)}=\phi\left(\left(w_{j}^{(I)}\right)^{T} x^{(I-I)}\right), \text { for } j=1: m_{l} \tag{9}
\end{equation*}
$$

The vector variable $x^{(I)} \in \mathbb{R}^{m_{l}}$ is the ouput of layer / of the network. As before, the sigmoid of the last layer may be omitted.

Are multiple layers necessary?

- 1990's: NO
- 2000's: YES
- A theoretical result

Theorem (Cybenko, ≈ 1986)
Any continuous function from $[0,1]^{d}$ to \mathbb{R} can be approximated arbitrarily closely by a linear output, two layer neural network defined in (2) with a sufficiently large number of hidden units m.

- A practical result

10BREAKTHROUGH \pm TECHNOLOGIES2O13
 Deep Learning

Deep learning = multi-layer neural net

- So, what is new?
- small variations in the "units", e.g. switch stochastically w.p. $\phi\left(w^{T} x^{i n}\right)$ (Restricted Bolzmann Machine), Rectified Linear units
- training method stochastic gradient, auto-encoders vs. back-propagation (we will return to this when we talk about training predictors)
- lots of data
- double descent

Resnets - Residual networks

Idea What is the "simplest" input-output function? $f_{0}(x)=x$

- Hence, a NN layer should learn the difference w.r.t. identity f_{0}

$$
\begin{equation*}
x_{l+1}=B_{l} \phi\left(W_{l} x_{l}\right)+x_{l} \tag{10}
\end{equation*}
$$

Generalization DenseNet

- Layer I gets inputs from $/-1, I-2, \ldots$

ConvNets - Convolutional Networks

- discrete convolution let $f, g: \mathbb{Z} \rightarrow \mathbb{R}$
$\mathbb{Z}=$ all integers

$$
\begin{equation*}
(f * g)(t)=\sum_{i \in \mathbb{Z}} f(t-i) g(i) \tag{11}
\end{equation*}
$$

- convolution as Toeplitz matrix vector multiplication
- in ConvNets, \mathbb{Z} is replaced by $1: m, f$ is padded with 0 's
- g is a (smoothing) kernel
- i.e. $g(i)=g(-i)>0$ and \mid supp $g \mid=2 s+1 \ll m, \sum_{i} g(i)=1$
- Convolutional layer $f \leftarrow x$ input, $g \leftarrow w$ weights, s output

$$
\begin{equation*}
s(t)=\sum_{i=t-s}^{t+s} w_{i} s(t-i) \tag{12}
\end{equation*}
$$

- Pooling

[^1]
Autoencoders

estion How to learn from data without outputs y ?
This is unsupervised learning, not prediction
Idea Learn a low dimensional/sparse representation $h(x)$ of data $x \in \mathbb{R}^{d}$

$$
\begin{equation*}
h(x) \in \mathbb{R}^{m}, \text { with } m<d \quad f(h(x)) \approx x! \tag{13}
\end{equation*}
$$

- Optimize $L(x, f(h(x)))$

Variations

- If f linear, $L_{L S}$, then we "learn" PCA
- Denoising autoencoder
- Add noise to x input, predict true x

$$
\begin{equation*}
\tilde{x} \sim C(\mid x), \quad \min L(x, f(h(\tilde{x}))) \tag{14}
\end{equation*}
$$

- Sparse autoencoder

$$
\begin{equation*}
\min L(x, f(h(x))+\Omega(h) \tag{15}
\end{equation*}
$$

Ω is regularization that makes h sparse

Transformer networks：Why we need attention

Attention Is All You Need

Ashish Vaswani Google Brain	Noam Shazeer Google Brain	Niki Parmar Google Research	Jakob Uszkoreit Google Research
avaswani＠google．com	noam＠google．com	nikipQgoogle．com	usz＠google．com

Llion Jones＊
Google Research
1lion＠google．com

Aidan N．Gomez＊\dagger
University of Toronto
aidan＠cs．toronto．edu

Łukasz Kaiser＊
Google Brain lukaszkaiserQgoogle．com

Illia Polosukhin＊${ }^{*}$

illia．polosukhin＠gmail．com
We propose a new simple network architecture，the Transformer，based solely on attention mechanisms， dispensing with recurrence and convolutionsentirely．

Wir schlagen eine neue einfache Netzwerkarchitektur， den Transformer，vor，die ausschließlich auf Aufmerksamkeitsmechanismen basiert und auf Wiederholung und Faltung vollständig verzichtet．

我们提出了一种新的简单的网络架构－－Transformer，完全基于注意力机制，摒弃了递归和卷积。
－mapping sequences to sequences（structured prediction）
－both long and short range dependencies
－range depends on input sequence

Basic architecture

- inputs x_{1}, x_{2}, \ldots, outputs y_{1}, y_{2}, \ldots from discrete set (e.g. words in English, Chinese)
- continuous internal representations
- embedding modules map input or output space to continuous representations (prelearned)

- recurrence/auto-regression y_{t} depends on $x_{1: t+k}$ and $y_{1: t-1}$
- encoder, decoder, encoder-decoder modules (which use attention)

How to implement attention

- queries, keys and values
- all learned
- Idea: query q matches key k results in selecting the corresponding value v
- q depends on current context, k depends on v
- $q, k \in \mathbb{R}^{d_{k}}$
- Q, K, V matrices of queries, keys, values

$$
\begin{equation*}
A(Q, K)=\operatorname{softmax}\left(\frac{1}{\sqrt{d_{k}}} Q K^{T}\right) \tag{16}
\end{equation*}
$$

- A_{q} : selects value v for the best matching key for each q

Transformer architecture

- D,E,DE modules: each have $N=6$ layers of Attention + Feed-forward (FFW) networks of same $d=512$
- FFW, A are ResNets
- FFW is $W_{2} \max \left(W_{1} x, 0\right), W_{1,2}$ with identical rows
- A is multihead attention
- $h=8$ parallel attention layers, concatenated
- advantages - implements long distance dependencies with fixed (small) number layers, and parallel computations

Attention mechanism in Transformer

- encoder-decoder
- queries from previous decode layer
- keys, values from current encoder output
- encoder - self-attention (=previous encoder layer)
- decoder
- self-attention, masked
- only from outputs before current step

[^0]: ${ }^{1}$ In neural net terminology, each variable z_{j} is a unit, the bottom layer is hidden, while top one is visible, and the units in this layer are called hidden/visible units as well. Sometimes the inputs are called input units; imagine neurons or individual circuits in place of each x, y, z variable.

[^1]: from www. deeplearningbook.org Chapter 9

