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Rate of linear convergence

Newton-Raphson “rounds” the surface of f around minimum

Implicit bias of Gradient Descent

Reading HTF Ch.: –, Murphy Ch.: –, Bach Chapter 5.2, 10.1
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Useful facts

Assume that our function f is quadratic, i.e

f (x) =
1

2
xTHx + gT x + c with H � 0. (1)

Then,

∇f (x) = Hx + g = H(x − x∗) (2)

∇2f (x) = H (3)

x∗ = −H−1g , and Hx∗ = −g (4)

(5)

Gradient descent x t+1 = x t − η∇f (x t)
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Rate of linear convergence

x t+1 − x∗ = (x t − ηH(x t − x∗))− x∗ (6)

= [I − ηH](x t − x∗) = (I − ηH)t(x0 − x∗) (7)

et+1 ≤ ‖I − ηH‖te0 with et = ‖x t − x∗‖ (8)

f (x)− f (x∗) =
1

2
(x − x∗)TH(x − x∗) for any x (9)

Proof
1

2
(x − x∗)TH(x − x∗) =

1

2
xTHx +

1

2
(x∗)THx∗ − xTHx∗︸ ︷︷ ︸

−xT g

recall Hx∗ = −g (10)

= f (x)−
(

1

2
(x∗)THx∗ + gT x∗

)
(11)

Hence,

f (x)− f (x∗) =
1

2
(x0 − x∗)T (I − ηH)2tH(x0 − x∗) (12)

because H(I − ηH) = (I − ηH)H (13)
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Choice of η

For convergence, we want to control the maximum eigenvalue of (I − ηH). Let m,M the min,
max singular values of H.

minimizeη maxλ∈[m,M]|1− ηλ| (14)

We obtain 1
η∗ = M+m

2
or

η∗ =
2

M + m
(15)

For this η∗ we obtain

β∗ ≡ σmax (I − ηH) =
M −m

M + m
(16)

This value is always in [0, 1]. Denote by κ = M
m

the condition number of H; β∗ approaches 1
when κ is large.
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Newton-Raphson “rounds” the surface of f around minimum

I If we take H = I , then β = 0, meaning that the first order convergence is infinitely fast
(super-linear convergence).

I How can we make H = I? We transform the variable x by

x = H−1/2z, z = H1/2x (17)

Then f (z) = 1
2
‖z‖2 + gTH−1/2z + c and the new Hessian is I .

Let us look at the gradient descent in z.

∇z f (z) = z + (H−1/2)T g (18)

z t+1 = z t − η(z t + (H−1/2)T g) (19)

x t+1 = H−1/2z t+1 = (1− η)H−1/2z t − ηH−1g (20)

= (1− η)x t − η∇2
x f (x t)∇x f (x t)︸ ︷︷ ︸
Newtonstep

(21)

I Hence the Newton step is a gradient step in the transformed coordinates z.

For a symmetric A � 0, B = A1/2 is a matrix for which BTB = A holds; A1/2 is not unique.
We have also A−1 = (BTB)−1 = B−1(BT )−1. Exercise Prove that B is non-singular when A is

non-singular; find the equivalence class of all B which are the square root of some A.
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Gradient descent for Least Squares Loss

Consider linear regression, with f (θ) ≡ LLS (θ) = 1
2n
‖y − Xθ‖2 with d < n. Let XXT ∈ Rn×n

be the kernel matrix and H = 1
n
XTX the covariance matrix.

f (θ) =
1

2
θTHθ −

1

n
yTX︸ ︷︷ ︸
g

θ +
1

2n
yT y (22)

I We start from θ0 = 0.
I We don’t assume the solution is unique. In other words, H may be singular.
I In particular, note that for d > n, H is singular, but K is invertible w.l.o.g. when the

system Xθ = y has a solution (and the system has an infinite number of solutions).
I For any θ∗ satisfying y = Xθ∗ and for some iterate θt we have

θt − θ∗ = (I − ηH)t(θ0 − θ∗) (23)

θt = [I − (I − ηH)t ]θ∗ (24)
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The GD path

I Now on the GD path (which is deterministic given X)

∇f (0) = g =
1

n
XT y (25)

θ1 = 0− η∇f (0) = −η
1

n
XT y (26)

Thus θ1 is a linear combination of the rows of X (i.e. of the data points).
I By induction, θt for any t is a linear combination of the rows of X, hence

θt = XTαt , with αt ∈ Rn (27)

I Since the gradient is non-zero whenever y 6= Xθ, the GD algorithm converges to a point1

where y = Xθ = XXTα.
I When K is invertible, let α∗ = K−1y ; then θ∗ = XTα∗ is the limit of GD.

1This is informal. What we can say that when t is sufficiently large, Xθt = XXTαt is arbitrarily close to y .
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θ∗ is the minimum norm solution of Xθ = y

I To prove this, we must use convex duality.

Primal: inf
θ

1

2
‖θ‖2 s.t. Xθ = y ⇔ Dual: sup

α
inf
θ

1

2
‖θ‖2 + αT (y − Xθ) (28)

I Solving the optimization over θ as a function of the parameter α we obtain θ = XTα.
I We replace θ in (28) to obtain

sup
α
αT y −

1

2
αTKα (29)

This is a concave function with optimum α∗ = K−1y Yes, we get the same α∗ from the
previous page!

I Finally, the solution to the Primal problem is θ∗ = XTα∗ = XTK−1y , the solution
obtained by Gradient Descent!

Note that θ∗ above is not the OLS solution. In OLS, we minimize residuals norm, here we
minimize the θ norm.
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