Lecture Notes IV. 2 - Simple analysis of gradient descent

Marina Meilă
mmp@stat. washington.edu

Department of Statistics
University of Washington

October, 2021

Rate of linear convergence

Newton-Raphson "rounds" the surface of f around minimum

Implicit bias of Gradient Descent

Reading HTF Ch.: -, Murphy Ch.: -, Bach Chapter 5.2, 10.1

Useful facts

Assume that our function f is quadratic, i.e

$$
\begin{equation*}
f(x)=\frac{1}{2} x^{T} H x+g^{T} x+c \text { with } H \succ 0 . \tag{1}
\end{equation*}
$$

Then,

$$
\begin{align*}
\nabla f(x) & =H x+g=H\left(x-x^{*}\right) \tag{2}\\
\nabla^{2} f(x) & =H \tag{3}\\
x^{*} & =-H^{-1} g, \quad \text { and } \quad H x^{*}=-g \tag{4}
\end{align*}
$$

Gradient descent $x^{t+1}=x^{t}-\eta \nabla f\left(x^{t}\right)$

Rate of linear convergence

$$
\begin{align*}
x^{t+1}-x^{*} & =\left(x^{t}-\eta H\left(x^{t}-x^{*}\right)\right)-x^{*} \tag{6}\\
& =[I-\eta H]\left(x^{t}-x^{*}\right)=(I-\eta H)^{t}\left(x^{0}-x^{*}\right) \tag{7}\\
e^{t+1} & \leq\|I-\eta H\|^{t} e^{0} \quad \text { with } e^{t}=\left\|x^{t}-x^{*}\right\| \tag{8}\\
f(x)-f\left(x^{*}\right) & =\frac{1}{2}\left(x-x^{*}\right)^{T} H\left(x-x^{*}\right) \text { for any } x \tag{9}\\
\text { Proof } & \\
\frac{1}{2}\left(x-x^{*}\right)^{T} H\left(x-x^{*}\right) & =\frac{1}{2} x^{T} H x+\frac{1}{2}\left(x^{*}\right)^{T} H x^{*}-\underbrace{x^{\top} H x^{*}}_{-x^{\top} g} \text { recall } H x^{*}=-g \tag{10}\\
& =f(x)-\left(\frac{1}{2}\left(x^{*}\right)^{T} H x^{*}+g^{T} x^{*}\right) \tag{11}
\end{align*}
$$

Hence,

$$
\begin{align*}
f(x)-f\left(x^{*}\right)= & \frac{1}{2}\left(x^{0}-x^{*}\right)^{T}(I-\eta H)^{2 t} H\left(x^{0}-x^{*}\right) \tag{12}\\
\text { because } & H(I-\eta H)=(I-\eta H) H \tag{13}
\end{align*}
$$

Choice of η

For convergence, we want to control the maximum eigenvalue of $(I-\eta H)$. Let m, M the min , max singular values of H.

$$
\begin{equation*}
\operatorname{minimize}_{\eta} \max _{\lambda \in[m, M]}|1-\eta \lambda| \tag{14}
\end{equation*}
$$

We obtain $\frac{1}{\eta^{*}}=\frac{M+m}{2}$ or

$$
\begin{equation*}
\eta^{*}=\frac{2}{M+m} \tag{15}
\end{equation*}
$$

For this η^{*} we obtain

$$
\begin{equation*}
\beta^{*} \equiv \sigma_{\max }(I-\eta H)=\frac{M-m}{M+m} \tag{16}
\end{equation*}
$$

This value is always in $[0,1]$. Denote by $\kappa=\frac{M}{m}$ the condition number of $H ; \beta^{*}$ approaches 1 when κ is large.

Newton-Raphson "rounds" the surface of f around minimum

- If we take $H=I$, then $\beta=0$, meaning that the first order convergence is infinitely fast (super-linear convergence).
- How can we make $H=1$? We transform the variable x by

$$
\begin{equation*}
x=H^{-1 / 2} z, \quad z=H^{1 / 2} x \tag{17}
\end{equation*}
$$

Then $f(z)=\frac{1}{2}\|z\|^{2}+g^{\top} H^{-1 / 2} z+c$ and the new Hessian is I.
Let us look at the gradient descent in z.

$$
\begin{align*}
\nabla_{z} f(z) & =z+\left(H^{-1 / 2}\right)^{T} g \tag{18}\\
z^{t+1} & =z^{t}-\eta\left(z^{t}+\left(H^{-1 / 2}\right)^{T} g\right) \tag{19}\\
x^{t+1} & =H^{-1 / 2} z^{t+1}=(1-\eta) H^{-1 / 2} z^{t}-\eta H^{-1} g \tag{20}\\
& =(1-\eta) x^{t}-\eta \underbrace{\nabla_{x}^{2} f\left(x^{t}\right) \nabla_{x} f\left(x^{t}\right)}_{\text {Newtonstep }} \tag{21}
\end{align*}
$$

- Hence the Newton step is a gradient step in the transformed coordinates z.

For a symmetric $A \succ 0, B=A^{1 / 2}$ is a matrix for which $B^{T} B=A$ holds; $A^{1 / 2}$ is not unique.
We have also $A^{-1}=\left(B^{T} B\right)^{-1}=B^{-1}\left(B^{T}\right)^{-1}$. Exercise Prove that B is non-singular when A is non-singular; find the equivalence class of all B which are the square root of some A.

Gradient descent for Least Squares Loss

Consider linear regression, with $f(\theta) \equiv L_{L S}(\theta)=\frac{1}{2 n}\|y-\mathbf{X} \theta\|^{2}$ with $d<n$. Let $\mathbf{X X}^{T} \in \mathbb{R}^{n \times n}$ be the kernel matrix and $H=\frac{1}{n} \mathbf{X}^{T} \mathbf{X}$ the covariance matrix.

$$
\begin{equation*}
f(\theta)=\frac{1}{2} \theta^{\top} \boldsymbol{H} \theta-\underbrace{\frac{1}{n} y^{\top} \mathbf{X}}_{g} \theta+\frac{1}{2 n} y^{\top} y \tag{22}
\end{equation*}
$$

- We start from $\theta^{0}=0$.
- We don't assume the solution is unique. In other words, H may be singular.
- In particular, note that for $d>n, H$ is singular, but K is invertible w.l.o.g. when the system $\mathbf{X} \theta=y$ has a solution (and the system has an infinite number of solutions).
- For any θ^{*} satisfying $y=\mathbf{X} \theta^{*}$ and for some iterate θ^{t} we have

$$
\begin{align*}
\theta^{t}-\theta^{*} & =(I-\eta H)^{t}\left(\theta^{0}-\theta^{*}\right) \tag{23}\\
\theta^{t} & =\left[I-(I-\eta H)^{t}\right] \theta^{*} \tag{24}
\end{align*}
$$

The GD path

- Now on the GD path (which is deterministic given \mathbf{X})

$$
\begin{align*}
\nabla f(0) & =g=\frac{1}{n} \mathbf{X}^{T} y \tag{25}\\
\theta^{1} & =0-\eta \nabla f(0)=-\eta \frac{1}{n} \mathbf{X}^{T} y \tag{26}
\end{align*}
$$

Thus θ^{1} is a linear combination of the rows of \mathbf{X} (i.e. of the data points).

- By induction, θ^{t} for any t is a linear combination of the rows of \mathbf{X}, hence

$$
\begin{equation*}
\theta^{t}=\mathbf{X}^{T} \alpha^{t}, \quad \text { with } \alpha^{t} \in \mathbb{R}^{n} \tag{27}
\end{equation*}
$$

- Since the gradient is non-zero whenever $y \neq \mathbf{X} \theta$, the GD algorithm converges to a point ${ }^{1}$ where $y=\mathbf{X} \theta=\mathbf{X X}^{\top} \alpha$.
- When K is invertible, let $\alpha^{*}=K^{-1} y$; then $\theta^{*}=\mathbf{X}^{T} \alpha^{*}$ is the limit of GD.

[^0]θ^{*} is the minimum norm solution of $\mathbf{X} \theta=y$

- To prove this, we must use convex duality.

$$
\begin{equation*}
\text { Primal: } \inf _{\theta} \frac{1}{2}\|\theta\|^{2} \text { s.t. } \mathbf{X} \theta=y \quad \Leftrightarrow \quad \text { Dual: } \sup _{\alpha} \inf _{\theta} \frac{1}{2}\|\theta\|^{2}+\alpha^{T}(y-\mathbf{X} \theta) \tag{28}
\end{equation*}
$$

- Solving the optimization over θ as a function of the parameter α we obtain $\theta=\mathbf{X}^{\top} \alpha$.
- We replace θ in (28) to obtain

$$
\begin{equation*}
\sup _{\alpha} \alpha^{T} y-\frac{1}{2} \alpha^{T} K \alpha \tag{29}
\end{equation*}
$$

This is a concave function with optimum $\alpha^{*}=K^{-1} y$ Yes, we get the same α^{*} from the previous page!

- Finally, the solution to the Primal problem is $\theta^{*}=\mathbf{X}^{T} \alpha^{*}=\mathbf{X}^{T} K^{-1} y$, the solution obtained by Gradient Descent!

Note that θ^{*} above is not the OLS solution. In OLS, we minimize residuals norm, here we minimize the θ norm.

[^0]: ${ }^{1}$ This is informal. What we can say that when t is sufficiently large, $\mathbf{X} \theta^{t}=\mathbf{X} \mathbf{X}^{T} \alpha^{t}$ is arbitrarily close to y.

