
S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

1

Lecture IV: Training predictors, Part I

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2021

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

2

Analytic optimization

Optimization generalities
Optimization glossary
Descent methods zoo

Descent methods
The steepest descent method
Line minimization algorithms
The Newton-Raphson method
Examples: Logistic regression and Backpropagation

Reading HTF Ch.: Lasso 3.1,2,4, Logistic regression 4.4, Neural networks 11, Murphy Ch.:
Ridge regression (including numerics) 7.5, Descent methods 8.3.2,3,5, Neural networks
16.5.1–4, Autoencoders 28

For more mathematical background, look e.g. at “Numerical recipes” chapter 10 or, for really advanced

treatment Nocedal and Wrigth (Ch 3, 6).

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

3

The typical training problem

Given D = {(x1, y1), . . . , (xn, yn)} data set (and implicitly a prediction task)
F class of predictors (e.g Linear {f (x) = βT x}, quadratic f (x) = xTAx + βT x + γ, neural
net)
and J(f ;D) objective function

find f = argmin
F

J(f ;D)

Remarks
I Typically objective functions J

J(f ;D) = L̂(f) empirical loss (1)

OR
Jλ(f ;D) = L̂(f) + λR(f) regularized objective (2)

R(f) is called regularization (functional) and λ ≥ 0 is the regularization constant (or
parameter)
λ is fixed in the minimization of J. Setting λ can be thought as a form of model selection;
as we shall see later λ plays the role of a smoothing parameter, or hyperparameter

I This lecture: algorithms for minimizing J’s.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

4

Linear Least Squares regression
I Problem F = {f (x) = βT x}, LLS (y , f (x)) = (y − f (x))2, y ∈ R, J = L̂
I Solution

I Finding f ∈ F is equivalent to finding β ∈ Rd (or Rd+1)

I define data matrix or (transpose) design matrix

X =


(x1)T

(x2)T

. . .

(x i)T

. . .

(xn)T

 ∈ RN×n and Y =


y1

y2

. . .
yn

 , E =


ε1

ε2

. . .
εn

 ∈ Rd

I Then we can write
Y = Xβ + E

I The solution β̂ is chosen to minimize the sum of the squared errors

J(β) = L̂LS =
n∑

i=1

(y i − βT xi)
2 = ||E ||2 (3)

which gives Exercise Derive it

β̂ = (XTX)−1XT y (4)

I Underlying statistical model y = βT x + ε, ε ∼ N(0, σ2) (and (x1:N , y1:N) sampled
i.i.d., of course)

I Define the negative log-likelihood Llogl = − ln P(y |x, β)
I Then, (y − βT x)2 =

∑n
i=1(εi)2 = −2σ2 ln P(y i |x i , β) = −2σ2L̂logl

I Hence, β̂ from (4) is the Maximum Likelihood (ML) estimator of the parameter β and the

minimizer of L̂logl

I This is an example where the minimizer of J(f) has an analytical formula. A few more
examples of this kind follow.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

4

Linear Least Squares regression
I Problem F = {f (x) = βT x}, LLS (y , f (x)) = (y − f (x))2, y ∈ R, J = L̂
I Solution

I Finding f ∈ F is equivalent to finding β ∈ Rd (or Rd+1)
I define data matrix or (transpose) design matrix

X =


(x1)T

(x2)T

. . .

(x i)T

. . .

(xn)T

 ∈ RN×n and Y =


y1

y2

. . .
yn

 , E =


ε1

ε2

. . .
εn

 ∈ Rd

I Then we can write
Y = Xβ + E

I The solution β̂ is chosen to minimize the sum of the squared errors

J(β) = L̂LS =
n∑

i=1

(y i − βT xi)
2 = ||E ||2 (3)

which gives Exercise Derive it

β̂ = (XTX)−1XT y (4)

I Underlying statistical model y = βT x + ε, ε ∼ N(0, σ2) (and (x1:N , y1:N) sampled
i.i.d., of course)

I Define the negative log-likelihood Llogl = − ln P(y |x, β)
I Then, (y − βT x)2 =

∑n
i=1(εi)2 = −2σ2 ln P(y i |x i , β) = −2σ2L̂logl

I Hence, β̂ from (4) is the Maximum Likelihood (ML) estimator of the parameter β and the

minimizer of L̂logl

I This is an example where the minimizer of J(f) has an analytical formula. A few more
examples of this kind follow.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

4

Linear Least Squares regression
I Problem F = {f (x) = βT x}, LLS (y , f (x)) = (y − f (x))2, y ∈ R, J = L̂
I Solution

I Finding f ∈ F is equivalent to finding β ∈ Rd (or Rd+1)
I define data matrix or (transpose) design matrix

X =


(x1)T

(x2)T

. . .

(x i)T

. . .

(xn)T

 ∈ RN×n and Y =


y1

y2

. . .
yn

 , E =


ε1

ε2

. . .
εn

 ∈ Rd

I Then we can write
Y = Xβ + E

I The solution β̂ is chosen to minimize the sum of the squared errors

J(β) = L̂LS =
n∑

i=1

(y i − βT xi)
2 = ||E ||2 (3)

which gives Exercise Derive it

β̂ = (XTX)−1XT y (4)

I Underlying statistical model y = βT x + ε, ε ∼ N(0, σ2) (and (x1:N , y1:N) sampled
i.i.d., of course)

I Define the negative log-likelihood Llogl = − ln P(y |x, β)
I Then, (y − βT x)2 =

∑n
i=1(εi)2 = −2σ2 ln P(y i |x i , β) = −2σ2L̂logl

I Hence, β̂ from (4) is the Maximum Likelihood (ML) estimator of the parameter β and the

minimizer of L̂logl

I This is an example where the minimizer of J(f) has an analytical formula. A few more
examples of this kind follow.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

5

Regularized Linear Regression

I L2 regularized (linear) LS regression (Ridge regression)

J(f ;D) =
n∑

i=1

(y i − βT xi)
2 + λ||β||2 (5)

Solution β̂ = (XTX + λIn)−1XTY Exercise Derive it.

I L1 regularized (linear) regression (LASSO)

J(f ;D) =
n∑

i=1

(y i − βT xi)
2 + λ||β||1 (6)

By contrast with the previos problem(s), this one does not have an analytic solution.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

6

Regularized Linear Regression

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

7

Generative models for classification
I If each class conditional distribution PX |Y=y can be estimated by an analytic formula, then

the generative classifier can be estimated analytically
I Examples LDA, QDA

Example (Naive Bayes for text classification)

The bag of words model of text. Let D = {words} be a dictonary. For simplicity, we shall
assume D = { and, average, batting, score, variance}. We are given a corpus D containing N
documents of two classes { sports= −1, statistics= 1}. For each document in D, we form a
vector x ∈ {0, 1}|D| by setting xw = 1 if the document contains word w and 0 otherwise. For
example, the document ”Reddick’s batting average is 0.50” has x = [0 1 1 0 xs0]. The x vectors
are the data to which we fit a Naive Bayes model. Assume our toy corpus is now the table on
the left, and the estimated class conditional distributions are on the right.

x y
0 1 1 0 0 −1
1 1 0 1 0 −1
1 0 1 1 0 −1
1 0 1 0 0 −1
1 0 1 0 0 −1
1 1 0 0 1 1
0 0 0 1 0 1
1 1 0 0 1 1
1 1 0 0 0 1
1 0 0 0 1 1

PXj=1|Y=−1 y

.8 .4 .8 .4 0 −1

.8 .6 0 .2 .6 1

PY (1) = 0.5 = p

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

8

Example (Naive Bayes for text (continued))

Before we go further, we will “adjust” the 0 and 1 estimated probabilities for “variance” and
“batting”, setting them to 1/M, respectively 1− 1/M for some “large” M = 10 Exercise Do you
think this problem occurs often in real applications? Find a statistical framework to justify the adjustment.
The probability of a new document, e.g x = [10010] in class 1, respectively −1 is

P(x|y = −1) = 0.8× (1− 0.4)× (1− 0.8)× 0.4× 0.9 (7)

= 0.8x1 (1− 0.8)1−x1 × 0.4x2 (1− 0.4)1−x2 . . . (8)

P(x|y = 1) = 0.8× (1− 0.6)× (1− 0.1)× 0.2× (1− 0.6) (9)

The NB classifier we obtain is

f (x) = ln
p

1− p︸ ︷︷ ︸
1

+x1 ln
Pand|1

Pand|−1︸ ︷︷ ︸
1

+x2 ln
Paverage|1

Paverage|−1︸ ︷︷ ︸
2/3

+x3 ln
Pbatting|1

Pbatting|−1︸ ︷︷ ︸
+∞

+x4 ln
Pscore|1

Pscore|−1︸ ︷︷ ︸
2.

+x5 ln
Pvariance|1

Pvariance|−1︸ ︷︷ ︸
0

(10)

+(1− x1) ln
1− Pand|1

1− Pand|−1

+ (1− x2) ln
1− Paverage|1

1− Paverage|−1

+ (1− x3) ln
1− Pbatting|1

1− Pbatting|−1

+ (1− x4) ln
1− Pscore|1

1− Pscore|−1

+ (1− x5) ln
1− Pvariance|1

1− Pvariance|−1

which evaluates to f ([1 0 0 1 0]) = ln 1 + ln 3
2

+ ln 2
9

+ ln 2 + ln 9
4

= 0.405 > 0 Notes As you saw

above, we are not required to include all possible words in the dictionary Exercise Find some reasons why. A

common preprocessing step stemming which aims to map words in the same word family to a single w ; e.g

“batting” → “bat”. Sometimes stop words like “the”, “and” are removed.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

9

Most predictors can’t be estimated analytically

I Unfortunately, minimizing J analytically is possible only in a handful of examples.

I In all other cases, we find f = J
F

by numerical/iterative methods also called search (or

training/learning, of course). For example
I CART algorithm Exercise What J is the CART algorithm minimizing?
I Perceptron algorithm (will be revisited this lecture)

I Therefore now we study generic algorithms for finding minima of functions of n variables.
This is called (numerical) optimization.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

10

Optimization glossary

Change in notation!

Here, f is a function to be minimized, and x the variable in the domain of the function. In a
learning task, f will be replaced by an objective J like L̂logl and x by the parameters of the
predictor, e.g. w , β, θ,

The methods in this lecture belong to the class of unconstrained optimization methods.
Problem Find minx f (x) for x ∈ Rd or x ∈ D the domain of f . We assume that f is a twice

differentiable function with continuous second derivatives.
Notation The gradient of f is the column vector

∇f (x) =

[
∂f

∂xi
(x)

]n
i=1

(11)

and the Hessian of f is the square symmetric matrix of second partial derivatives of f

∇2f (x) =

[
∂2f

∂xixj
(x)

]n
i,j=1

(12)

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

11

Optimization basics

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

12

Local and global minima

I A local minimum for f is point x∗ for which

f (x∗) ≤ f (x) whenever ||x − x∗|| < ε

I A global minimum for f is point x∗ for which

f (x∗) ≤ f (x) for all x in the domain of f

We say x∗ is a strict local/global minimum when the above inequalities are strict for
x 6= x∗.

I A minimum is isolated if it is the only local minimum in an ε-ball around itself.
I A stationary point for f is a point x∗ for which ∇f (x∗) = 0.

Theorem
If f has continuous second derivative everywhere in D, and x∗ ∈ D is a point for which
∇f (x∗) = 0 and ∇2f (x∗) ≥ 0 (∇2f (x∗) > 0) then x∗ is a (nonsingular) local minimum for f .

In what follows, we will deal only with non-singular local minima. A non-singular local
minimum is strict and isolated.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

13

Descent methods

Many unconstrained optimization methods for finding a local minimum are of the form:

xk+1 = xk + ηkdk (13)

where dk ∈ Rd represents an (unnormalized) direction and ηk > 0 is a scalar called the step
size.
Direction choice

I gradient based dk = −Dk∇f (xk) with Dk ∈ Rn×n

I steepest descent Dk = I
I stochastic gradient (more about it later)
I Newton-Raphson Dk = ∇2f (xk)−1

I conjugate gradient – implicity multistep rescaling of the axes “equivalent” to Dk = ∇2f (xk)−1

I quasi-Newton – implicit multistep approximation of Dk = ∇2f (xk)−1

I non-gradient based
I coordinate descent dk = one of the basis vectors in Rd

Step size choice

I line minimization ηk = minη f (xk + ηdk)
I Armijo rule (also called Backtracking) = search but not minimization
I constant step size ηk = s
I diminishing step size ηk → 0;

∑
k η

k =∞

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

14

Steepest descent

Algorithm Steepest-Descent

Input x0 initial point
For k = 0, 1, . . .

1. calculate dk = ∇f (xk)
2. find ηk by line minimization
3. xk+1 → xk − ηkdk

until stopping condition satisfied
Output xk+1

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

15

How to evaluate an optimization method? [Optional]

I Does it converge to a minimum?

As we shall see, all the methods described here converge to a minimum, but some of the
require the function f to have additional “good” properties. A method which converges for
larger classes of f ’s is more robust.

I How fast?

Answer is usually in terms of rates of convergence
Let ek = xk − x∗ or ek = f (xk)− f (x∗) denote the “error” at step k. Then, an algorithm has
a rate of convergence of order p if

||ek+1|| ≤ β(||ek ||)p for some 0 < β < 1 (14)

In the above, p > 0 but not necessarily an integer.
Most common cases are p = 1 (linear1) and p = 2 (quadratic). A rate of p < 1 is possible,
and relevant for machine learning (see Part II). Superlinear scales are desirable – and often
achievable.
Some modern machine learning algorithms have sublinear rates, e.g

||ek || ≤
β

k
||e0|| (15)

This is considered a slow convergence rate in classical optimization. Exercise Why may we like this

rates in statistics/machine learning?

I Practical issues: Is it easy to implement or tune? Available software?

1The use of the term “linear” here is inconsistent with its use in e.g complexity theory. If an optimization algorithm is

linear, that means that the error decreases exponentially with k, as ||ek || ≤ βk ||e0||.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

16

Computational complexity – theory and practice

In optimization problems, there are various ways of expressing the computational complexity of
an algorithm:

I number of flops (floating point operations) per iteration, usually as a function of n the
dimension of the problem

I number of function or gradient evaluations per iteration
I number of iterations; this latter quantity is given implicitly, by the rate of convergence.
I memory requirements
I With the increased complexity and variation of computer systems, the above mentioned

number of operations is becoming obsolete. Algorithms are increasingly judged by other,
system-related qualities, like: type of memory access (do they access memory in blocks or
randomly), cache misses, etc. These criteria are beyond the scope of this course, but what
you need to remember is that the texbook properties on an algorithm alone do not always
predict its performance on the system you are going to run it. You may need to
experiment with parameters and with algorithms to determine which algorithm is better
suited for your data and system.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

17

What’s in a function evaluation?

In classical optimization, the computation of f (x) or ∇f (x) is considered one unit of
computation.
For machine learning, let us look inside the box. Take for example the LASSO objective
function

J(β) =
n∑

i=1

(y i − βT xi)
2 + λ||β||1.

We notice that

I J is a sum with n + 1 terms
I each x i ∈ Rd , β ∈ Rd so each term takes O(n) operations (additions and multiplications)

to compute
I Total number of operations to compute J(β) once is O(nd)
I Do this exercise Exercise The gradient ∇J is in Rd and is also a sum of n + 1 terms. How many

operations to compute it?

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

18

Transitory and asymptotic regimes

There are two regimes for each algorithm:

I the transitory, or approach regime, when xk is far away from x∗

I the asymptotic regime, near x∗ – most classic results are about this regime

The theoretical (and practical) behavior of optimization algorithms will strongly depend on the
properties of the function f to be optimized around its minimum x∗.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

19

Not all f ’s are twice differentiable
By default we will assume f is twice differentiable and that its Hessian ∇2f is continuous and
strictly positive definite around x∗. But other, weaker, conditions on f also indicate an f that
is “easy” to minimize. Here are some of the most common ones.

I f is B-Lipschitz if there is B > 0 so that

|f (y)− f (x)| ≤ B||y − x || for all x , y

A Lipschitz function, behaves “almost” like a differentiable function with bounded
gradient.

I The problem minx f is a smooth minimization problem if f it is upper bounded by a
quadratic function around x∗, i.e. iff there exists M > 0 so that

f (x)− f (x∗) ≤
1

2
M||x − x∗||2

on a neighborhood of x∗. This property indicates that f , even though it may not be
differentiable, behaves “almost like a quadratic”, in the sense that local quantities
(gradient, Hessian) are informative w.r.t the minimum. An example of a non-smooth
minimization problem is minx |x |. The gradient ∇f is ±1 everywhere but in 0, so it gives
us information on which side of x the minimum lies, but its size does not tell us how far
we are from x∗.

I A function f that is lower bounded by a quadratic function around x∗ is called strongly
convex (more about this later).

f (y)− f (x)−∇f (x)T (y − x) ≥
1

2
m||x − y ||2

If f is strongly convex, then the minimum x∗ is well localized.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

20

Examples from Machine Learning

I f (x) = |x | is 1-Lipschitz
I If ∇f exists and ||∇f (x)|| ≤ B for all x , then f is B-Lipschitz
I A C2 function (continuous Hessian everywhere on the domain) with ∇2f (x∗) ≺ 0 is both

strongly convex and smooth
I L̂01 the misclassification cost is piecewise constant. Hence, not differentiable everywhere,

not strongly convex, but smooth. Very bad J to optimize, though.
I The LASSO cost function is not differentiable everywhere, it is not smooth but strongly

convex. This is a very frequent in machine learning problems.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

21

Steepest (gradient) descent

I The steepest descent method follows the direction of the gradient.
I Rate of convergence: with line minimization or Armijo (see next slide), linear rate. For

other line search methods, including constant step size, the rate of convergence is no
larger.

I Ill-conditioning: The convergence coefficient β of equation (14) can get very close to 1
(very slow convergence) if the Hessian is ill conditioned.

Let M,m denote respectively the largest and the smallest eigenvalue of ∇2f (x∗). By
continuity, we can assume that the Hessian around x∗ is approximately the same. If M >> m
then the function will have a “long, narrow valley” with an almost flat “bottom” around x∗,
oriented along the smallest eigenvector. The gradient will be almost perpendicular to the
valley, and the algorithm, even with the optimal line minimization, will advance very slowly.
Hence, many optimization methods (but not stochastic gradient) can be seen as “applying
some coordinate transformation” that will turn the elongated ellipses into circles, so that
steepest descent in this new coordinates can move rapidly towards the optimum. Equivalently,
having such a transformation (which is represented by the Hessian matrix), one can apply the
“inverse transformation” to the descent direction, which is precisely what the Newton-Raphson
method does.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

22

The rate of steepest descent

Back to site

Nocedal & Wright 2006, Line Search, p 42 http://biosport.ucdavis.edu/lab-meetings/nlp-imag...

1 of 1 10/22/2015 09:37 AM

reproduced from Nocedal & Wright

In the ideal case of a quadratic function

β =

(
M −m

M + m

)
This holds approximately in a neighborhood of the optimum. Hence, when M >> m, β → 1
and the optimum is approached very slowly. When M = m, then the convergence is
super-linear (i.e. limk→∞ ek+1/ek = 0)

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

23

Line minimization algorithms

Bracketing the minimum is optional but recommended. It means to find an interval [0, s] that
contains the desired η.
A more general definition of a bracketed minimum (not assuming that the function is
decreasing at xk in the direction of dk) is to find a triplet of points on the line a = xk , b, c
with b between a and c and f (b) < f (a), f (c). NR gives a method of finding such a triplet by
starting with an initial value for b and iteratively expanding the candidate triplet.
The Armijo (Backtracking) Rule for line minimizaton
Intuition Assume that we found a bracketing interval [0, s] for ηk . We start with ηk = s and
decrease it exponentially until we find that the function f has decreased “enough”. What is
“enough”? In an infinitesimal interval near xk along the direction of descent, the function will
decrease linearly, hence

f (xk)− f (xk + ηdk) ≈ η(−∇f (xk)Tdk) (16)

For a finite interval, we will ask for a decrease in f that is at least σ < 1 smaller than the
above. Note that for a sufficiently small η such a decrease can always be attained.
Armijo Line Search

1. Start with ηk = s, β < 1, σ < 1
2. If f (xk)− f (xk + ηkdk) > σηk (−∇f (xk)Tdk)

I then STOP
I else ηk ←− βηk and repeat

In practice, β ≈ 0.5 and σ << 1 e.g 0.1, 0.01 or even 0; s = 1 if no bracketing is done.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

24

The Newton-Raphson method

Assume that our function f is quadratic, i.e

f (x) =
1

2
xTAx + bT x + c with A � 0. (17)

Then,

∇f (x) = Ax + b (18)

∇2f (x) = A (19)

and the minimum can be computed analytically as the solution of Ax + b = 0, namely
x∗ = −A−1b. Equivalently, for any x

x∗ − x = −A−1b − A−1Ax = −A−1(Ax + b) = −∇2f (x)−1∇f (x) (20)

Hence, if f is quadratic, from any point x we can move in one step equal to −∇2f (x)−1∇f (x)
to the minimum. Therefore, the Newton-Raphson method takes Dk = ∇2f (x)−1 as if the
function was quadratic. Usually one also does a line search method, i.e ηk 6= 1 in practice.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

25

Performance of Newton-Raphson

Convergence rate:
Newton-Raphson is practically and theoretically very fast once we are in the vicinity of the
optimum. However, its behavior far away from the optimum must be monitored carefully.
Note for example that this is not a descent method, in the sense that it’s not guaranteed that
f (xk+1) < f (xk) unless some form of line minimization is used. Also, the method is attracted
by local maxima just as much as by local minima, so attention must be paid any time the
Hessian is not positive definite.
Computation complexity

I The Hessian requires O(n2) memory and O(n2) operations (O(n3N) for machine learning).
I Computing the direction is done by solving the linear system Hd = g where H=Hessian,

g=gradient, d=direction of descent. Solving a linear system takes O(n3) operations.
Computation makes Newton-Raphson prohibitive in high dimensions. Much work has been
done to find faster approximations to the Newton step.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

26

NEVER INVERT A MATRIX and other rules of the numerically savvy

. . . unless the inverse matrix is the last result you need from your computations. You may not
think of it much, but data in computers has finite precision, and all our results have numerical
errors. Here are a few simple rules to get the same result faster and often with a smaller
numerical error

I To calculate z = A−1b call a linear system solver for Az = b. This is twice as fast for
general A.

I If A is symmetric (in a linear system, eigenvalue problem, etc), tell your solver. You save
time (another factor of 3) and the results are much more accurate.

I (An advanced one) Solve all large linear systems iteratively.
I Computing the product ABCd where A,B,C are matrices and d is a vector: ((AB)C)d

takes 2n3 + n2 operations, A(B(Cd)) takes 3n2.
I Adding small numbers to large numbers: in a computer, 1.+ ε = 1. if ε < 1e − 16 or so.

Use the log-sum-exp trick (Murphy) or don’t waste computer time doing it (more
examples of the former later).

I Ask me about: numerical precision vs convergence precision vs statistical precision

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

27

Faster approximate Newton iterations

Remember the original Newton step is O(n3) (in general, not in machine learning)

I diagonal scaling: compute only the diagonal of the Hessian Dk = diag

{
∂2f
∂x2

i

}
A quick

fix, not too effective. This method is obviously O(n) in storage and number of operations
but it tends to underestimate the ratio M/m. Diagonal scaling amounts to rescaling each
variable separately, and it is effective in those cases when the variables have very different
ranges because of “imbalanced” measurement units (e.g in one direction the unit is miles,
in the other one it is millimeters).
It is useful to make also the general observation that the Newton method is “scale free”,
i.e it is unaffected by linear coordinate changes.

I Conjugate directions methods compute one exact Newton step in n conjugate steps, each
taking order n operations and memory. Beautiful, but not robust.

I Quasi-Newton (variable metric) methods takes only order n2 computing per iteration (or
less, for the limited memory variants). See Murphy for more on Quasi-Newton.
Recommended, look for the LBFGS function or option in your favorite language.

The main disadvantage of the quasi-Newton methods compared to the conjugate directions is
their large computational complexity (n2 versus n). The advantage is that the method is robust
to inexact line minimization, and that it does not need restarts. In addition, near the optimum,
the directions quasi-Newton generates are conjugate and so it is equivalent to conjugate
gradients and Newton-Raphson and thus converges very fast.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

28

Example: Logistic regression

Training = Estimating the parameters by Max Likelihood

Problem setup
I Denote y∗ = (1− y)/2 ∈ {0, 1}
I The likelihood of a data point is PY |X (y |x) = ey∗ f (x)

1+ef (x)

I The log-likelihood is l(β; x , y) = y∗f (x)− ln(1 + ef (x))
I Log-likelihood of the data set D

l(β;D) =
1

n

n∑
i=1

l(β; (x i , y i)) (21)

I Define the loss function
Llogl (β) = −l(β) (22)

I and the optmization criterion

J(β) = L̂logl =
1

n

n∑
i=1

−l(β; x i , y i) (23)

Minimizing J is maximizing l(β;D)

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

29

Logistic regression

I loss function Llogl
I optimization criterion J(β)

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

30

Calculating the gradient
I ∂l

∂f
= y∗ − 1

1+ef

This is a scalar, and sgn ∂l
∂f

= y

I We have also ∂f (x)
∂β

= x
I Now, the gradient of l w.r.t the parameter vector β is

∂l

∂β
=

∂l

∂f

∂f

∂β
=

(
y∗ −

1

1 + e−f (x)

)
x (24)

Interpretation: The infinitezimal change of β to increase log-likelihood for a single data
point is along the direction of x , with the sign of y Exercise Prove that (23) has a unique local

optimum.

Algorithm Steepest-Descent for Logistic Regression

Input β0 ∈ Rd initial point
For k = 0, 1, . . .

1. calculate dk = 1
n

∑n
i=1

(
y i
∗ − 1

1+e−f (xi)

)
x i

2. find ηk by line minimization
3. βk+1 → βk − ηkdk

until stopping condition satisfied
Output βk+1

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

30

Calculating the gradient
I ∂l

∂f
= y∗ − 1

1+ef

This is a scalar, and sgn ∂l
∂f

= y

I We have also ∂f (x)
∂β

= x
I Now, the gradient of l w.r.t the parameter vector β is

∂l

∂β
=

∂l

∂f

∂f

∂β
=

(
y∗ −

1

1 + e−f (x)

)
x (24)

Interpretation: The infinitezimal change of β to increase log-likelihood for a single data
point is along the direction of x , with the sign of y Exercise Prove that (23) has a unique local

optimum.

Algorithm Steepest-Descent for Logistic Regression

Input β0 ∈ Rd initial point
For k = 0, 1, . . .

1. calculate dk = 1
n

∑n
i=1

(
y i
∗ − 1

1+e−f (xi)

)
x i

2. find ηk by line minimization
3. βk+1 → βk − ηkdk

until stopping condition satisfied
Output βk+1

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

31

Example: Backpropagation
I The Backpropagation algorithm is steepest descent for neural networks
I Consider a two layer neural network

f (x) =
m∑
j=1

βjzj =
m∑
j=1

βjφ(
n∑

k=1

wkjxk) (25)

The parameters are β and W = [wkj]j=1:m,k=1:n

I Let the loss be LLS the Least Squares loss, J(β,W) = L̂LS (β,W)

Derivation of the gradient Exercise Derive this

∂J

∂βj
=

1

n

∑
i

∂(y i − f (x i))2

∂βj
=

1

n

∑
i

2(y i − f (x i))zj (x
i) (26)

∂J

∂wkj
=

1

n

∑
i

∂LLS (y i , f (x i))

∂zj (x i)

∂zj (x
i)

∂wkj
=

1

n

∑
i

(
2βk (y i − f (x i))

)
zj (x

i)(1− zj (x
i))︸ ︷︷ ︸

φ′

x ik

=
βk

n

∑
i

x ik (y i − f (x i))∇(logistic regressor) (27)

In the above we used the identity φ′ = φ(1− φ) Exercise Prove it

Computational savings
I when f (x i) is computed, zj (x

i) are too; they should be “cached” and re-used
I the derivative of φ is easily obtained from the φ value
I Exercise The above gradient formulas can be easilty written in matrix-vector form

Backpropagation extends recursively to multi-layer networks. Exercise Derive it. Exercise Calculate

the gradient for the 2 layer neural network with logistic output.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

32

Practical properties of backpropagation

I Unlike in logistic regression, J has many local optima even for two layers and simple
problems.

I Hence, initialization is important, and there are no general rules for a good initialization.
Even if the neural network works well, we do not know if we are at the optimum.

I Saturation If z̃j = wT
j x is large in magnitude, then zj = φ(z̃j) is near 0 or 1. In either

case, φ′(z̃j) = zj (1− zj) ≈ 0. We say that that this sigmoid is saturated; zj will be
virtually insensitive to changes in wj

2

To avoid saturation at the beginning of the training, one initializes W with “small” (w.r.t
max ||x i ||, random values. Exercise Why random and not exactly 0?

I To speed up training, it is useful to standardize the input data3 x1:N as a preprocessing
step. Exercise Note that theoretically shifting and rescaling the data should NOT have any effect.

I J can have plateaus, i.e. regions where ∇J ≈ 0 but that do not contain a local minimum.
Exercise What can cause plateaus? Exercise And what is bad about them?

I In conclusion, training neural networks by backpropagation is an art: requires experience
with the algorithm, careful tuning, repeated restarts, and a long time.

2or to changes in previous layers, if this is a multilayer network.
3Standardization should NOT include the dummy coordinate x0 ≡ 1.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

33

Training autoencoders

I The autoencoder is a neural network with one (or more) hidden layers, whose output y is
identical with the input x .

I Let x ∈ Rd , denote by z ∈ Rm the variables in the hidden layer, and by x̃ ∈ Rd the output
variables. Then,

x1:n
W−→ z1:m

W̃−→ x̃1:n

zj = φ(wT
j x), j = 1 : m x̃k = φ(w̃T

k z), k = 1 : n (28)

where W = [wij]i=1:n,j=1:m and W̃ = [w̃kj]j=1:n,k=1:m are the parameters (or weights) to
be learned.
Note that this is a neural network with multiple outputs

I The “labels” are the inputs x1:n, and the cost is the least squares cost.

L(x , x̃) = ||x − x̃ ||2 =
n∑

i=1

(xi − x̃i)
2 (29)

If the variables x are binary, then the output layer will have a sigmoid, and the cost will be the logistic

regression cost Llogl

I The training proceeds by backpropagation.

S
T
A
T

3
9
1
G
o
o
d
N
o
te
:
L
ec

tu
re

IV
:
T
ra
in
in
g
p
re
d
ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
1

34

What is an autoencoder good for?

I Note that if m ≥ n, we could set W = αI , W̃ = 1
α
I ; then z could be a (scaled) copy of x ,

and no training would be necessary to reproduce the input. Exercise Why do we need α at all?

Thus, interesting autoencoders set m < n. If x can be reconstructed well from z, then we
have succeeded to compress x , and we have learned in the process a set of descriptors, or
a representation for x .
If we want to have m > n, then we must use a sparsity inducing regularization (e.g L1) to
obtain an interesting representation.

I Autoencoders are the winning ingredient in Deep neural networks, and are a general
method automatically find features for prediction.
If the real problem is to predict another variable y from x , one can do as follows:

1. Train an autoencoder for x , learn W , W̃ .
2. “remove” the top layer W̃ , x̃ , i.e discard all but W
3. Construct a predictor ŷ = f (z), with z = φ(Wx), where W are the autoencoder weights.

Optional Do backpropagation to fine tune W .

If f is linear or logistic, we obtain a two layer neural net x → z → y .
I The above can be applied recursively. Given z1:N the representations of the inputs x1:N ,

one can now train an autoencoder z1:m → u1:p → z̃1:m, perhaps with p < m.
The interpretation is that u1:p are representing x at a higher level of abstraction than z.

I By using autoencoders, one can train multilayer neural networks, i.e. deep networks, while
avoiding the plateaus that plague backpropagation. Hence “deep learning” is training with
autoencoders.

	Analytic optimization
	Optimization generalities
	Optimization glossary
	Descent methods zoo

	Descent methods
	The steepest descent method
	Line minimization algorithms
	The Newton-Raphson method
	Examples: Logistic regression and Backpropagation

