Lecture Notes 0 - Intro to Machine Learning

Marina Meilă mmp@stat.washington.edu

> Department of Statistics University of Washington

September 29, 2022

What's in a name? Or where does "Machine Learning" /" Statistical Learning" come from?

What's in this sequence?

- Data analysis problems (e.g. clustering, classification)
- Statistical models (e.g. exponential family models, graphical models)
- Statistical methods (e.g. Support Vector Machines)
- Algorithms (e.g. message passing, K-means). There is a continuum between algorithms, methods, and some of the other items on this list.
- Mathematical facts/concepts from: graph theory, convex analysis
- Theorems (without proofs), lemmas (with proofs)

Taxonomies

- ... all of them incomplete
 - Statistical Learning Problems
 - Unsupervised
 - Supervised
 - (Semi-supervised)
 - Reinforcement
 - Statistical models
 - Parametric
 - Non-parametric
 - Statistical inference paradigms
 - Bayesian
 - Maximum Likelihood (ML)
 - Penalized Likelihood
 - Maximum A-Posteriori (MAP)

These lists are meant to show that in this course we will not adopt a particular paradigm, but we will touch on most of them.

Plan for 535

Supervised Learning (Prediction)

- Predictor examples
- Basic concepts: decision region, loss function, generative vs discriminative, bias-variance tradeoff
- Training predictors: gradient descent, [Newton method]
- [Combining predictors: bagging, boosting, additive models]
- Regularized predictors: model selection, support vector machines, L1 regularization,
- Learning theory and model selection basics

Unsupervised Learning

- Clustering: parametric, non-parametric
- [Graphical models intro]
- [Non-linear dimension reduction and geometric learning]
- [Semi-supervised learning]

graph data

[Reinforcement Learning]