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Two-layer Neural Networks /

Multi-layer neural networks e"

A zoo of multilayer networks& -

Reading HTF Ch.: 11.3 Neural networks, Murphy Ch.: (16.5 neural nets) and Dive Into Deep
Learning 4.1-4.3
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Two-layer Neural Networks

> The activation function (a term borrowed from neuroscience) is any continuous, bounded
and strictly increasing function on R. Almost universally, the activation function is the
logistic (or sigmoid)
1
zZ)= ——
W) = 1

because of its nice additional computational and statistical properties.
» We build a two-layer neural network in the following way:

1

Inputs Xk k=1:n

Bottom layer! zj = d(wlx) j=1:m, w; € R”?
Top layer f=¢(B'z) B eR™

Output f € [0,1]

In other words, the neural network implements the function

Fx) = D Bz = > Bid(d_ wigxk) € (—00,00) (2)
= pt

=1

Note that this is just a linear combination of logistic functions.

LIn neural net terminology, each variable z; is a unit, the bottom layer is hidden, while top one is visible, and the units in
this layer are called hidden /visible units as well. Sometimes the inputs are called input units; imagine neurons or individual
circuits in place of each x, y, z variable.



Output layer options

> linear layer as in (2) f =37, B,z
> logistic layer: in classification f(x) € [0, 1] is interpreted as the probability of the + class.
m m
fx) =628z | = o (D803 wxk) ©)
j=1 Jj=1 J
» softmax layer in multiway classification

The softmax function ¢(z) : R™ — (0,1)™

ek

() = 7z

4
=1 e (4)
» Properties
> 3T ¢i(z) =1 forall z
> for zx >z, j # k ¢u(z) — 1.
ap;
az: = Pwljx — jPk

> derivatives
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Generalized Linear Models (GLM)

A GLM is a regression where the “noise” distribution is in the exponential fami ly. %

> yeR, y ~ Py with
Poly) = v ot SO
ot
> the parameter 6 is a linear function of x € R “V\g-
0=8"x & )
J (@’)
K2)

> We denote Ey[y] = p. The function g(u) = 6 that relates the mean parameter to the
natural parameter is called the link function.

The log-likelihood (w.r.t. 3) is

I(8) = InPy(ylx) = 6y —(0) where 6 *ﬁT W}y— \AM‘}‘%M?‘)M

and the gradient w.r.t. 3 is therefore fj “/‘A {9)
Vsl = VolVs(BTx) = (v — pu)x (®)

This simple expression for the gradient is the generalization of the gradient expression you
obtained for the two layer neural network in the homework. [Exercise: This means that the
sigmoid function is the inverse link function defined above. Find what is the link function that
corresponds to the neural network.]



Multi-layer /Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.

Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function ¢. Let

x = x0y = x() ym :d,m =1 and define the recursion:

Xj(/) =4 ((%4’))Tx(’—’)), forj=1: Mo (9)

The vector variable x() € R™ is the ouput of layer | of the network. As before, the sigmoid of
the last layer may be omitted.
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Multi-layer /Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.

Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function ¢. Let

X = X(O),y = x(1), ng = n,n; =1 and define the recursion:

= o (wMTXUN) forj=1:m (9)

The vector variable x() € R™ is the ouput of layer | of the network. As before, the sigmoid of
the last layer may be omitted.
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Multi-layer /Deep neural networks Bade - Fmpagaz‘?‘om

The construction can be generalized recursively to arbitrary numbers of layers.

Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function ¢. Let

X = X(O),y = x(1), ng = n,n; =1 and define the recursion:

xj(l) = ¢ ((m{,.(/))TX(I_I)) s forj =1:n
o

9

(%
The vector variable x() € R™ is the ouput of aygr | of the network. As before, the sigmoid of

the last layer may be omitted.

Mo
- (')E NM —@-—’ — ‘A](Q“) — —
RN * Y& \Aaa 7(0:‘)
dim= o 20 WMy

Ia.%er 1 lower2 lawer L

wonked
0,y =T, L 00))

9 _ ), el
g, L WX



g
=
2
8
8
k]
5
g
o
Z
S
o
o
o
o
=
A
=
<
=
n

Multi-layer /Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.

Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function ¢. Let

X = X(O),y = x(1), ng = n,n; =1 and define the recursion:

= o (wMTXUD) forj=1:m (9)

The vector variable x(!) € R™ is the ouput of layer / of the network. As before, the sigmoid of

the last layer may be omitted. 2[]/‘3\]\)(};\
,,b()»\
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Multi-layer /Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.

Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function ¢. Let
x=x0y =x() ng = n, n; =1 and define the recursion: %((,) w (ﬂ_—l)

= o (wTXUN) forj=1:m (9)

The vector variable x(!) € R™ is the ouput of Iaﬁer | of the n twotbl)As before, the s%.ngmd of

q\l.he last layer may be omitted. v (ON Q;?’) \,\] U;S)
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Multi-layer /Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.

Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function ¢. Let
x=x0y =x() ng = n, n; =1 and define the recursion:

Xj(l) =9 ((v\/j(/))Tx(’_’)> ,forj=1:n 9)

The vector variable x() € R™ is the ouput of layer | of the network. As before, the sigmoid of
the last layer may be omitted.
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Multi-layer /Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.

Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function ¢. Let

X = X(O),y = x(1), ng = n,n; =1 and define the recursion:

= o (wMTXUD) forj=1:m (9)

The vector variable x() € R™ is the ouput of layer | of the network. As before, the sigmoid of
the last layer may be omitted.
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Are multiple layers necessary?

» 1990’s: NO
» 2000’s: YES

» A theoretical result

Theorem (Cybenko,~1986)

Any continuous function from [0,1]" to R can be approximated arbitrarily closely by a linear
output, two layer neural network defined in (2) with a sufficiently large number of hidden units
m.

> A practical result

9 0BREAKTHROUGH
=21 TECHNOLOGIES 2013

Deep Learning

Deep learning = multi-layer neural net
» So, what is new?

> small variations in the “units”, e.g. switch stochastically w.p. ¢(w’ x™) (Restricted Bolzmann
Machine), Rectified Linear units

> training mm;t_i_C—gradiegt, auto-encoders vs. back-propagation (we will return to this
when we talk about training predictors)

» lots of data

> double descent

statisheal .



Resnets — Residual networks

Idea What is the “simplest” input-output function?|fy(x) = x
> Hence, a NN layer should learn the difference Ww-r-t—idertity fy

X141 = Bio(Wix)+x (10)

Generalization DenseNet e —
> Layer / gets inputs from [ — 1,/ —2,...
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ConvNets — Convolutional Networks

» discrete convolution let f,g:Z — R
Z = all integers

(Fxg)(t) = D> _f(t—i)e(i) (11)
i€Z

» convolution as Toeplitz matrix vector multiplication

> in ConvNets, Z is replaced by 1 : n, f is padded with 0's

> g is a (smoothing) kernel
> ie g(i)=g(—i)>0and |suppg| =2m+1<n > g(i)=1
» Convolutional layer f < x input, g < w weights, s output

t+m

s(t)= > ws(t—i) (12)

i=t—m

v

Pooling



Pooling|layer

OO O DO OOOL

Detector layer: Nonlinearity
e.g., rectified linear ) f
i v
Convolution layer:
{a’v(ﬁgz Affine transform w (l')
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Autoencoders  ¢— Mmuja@/\/l SQO} New arotufectures:

%emrm‘v ve. “weddd
estion How to learn from data without outputs y? 5 N
This is unsupervised learning, not prediction
Idea Learn a low dimensional/sparse representation h(x) of data x € R" VAE
aﬂ
h(x) € R™, with m < n  f(h(x)) ~ ( Variabon
mm.l{orww
» Optimize L(x, f(h(x))) ) K& '[Pq

« = [-—0—" —vx'ay(hbc))
T

-¥ l
Lose (X \ﬁ?) (;’:}v\cmiond,
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Variations

v

If f linear, L; s, then we “learn” PCA
Denoising autoencoder

»> Add noise to x input, predict true x

v

%~ C(1%)

. minL(x, f(h(x))).(14)
» Sparse autoencoder
min L(x, f(h(x))) + Q(h)

Q is regularization that makes h sparse

(15)



