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Two-layer Neural Networks

Multi-layer neural networks

A zoo of multilayer networks

Reading HTF Ch.: 11.3 Neural networks, Murphy Ch.: (16.5 neural nets) and Dive Into Deep
Learning 4.1-4.3
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Two-layer Neural Networks

I The activation function (a term borrowed from neuroscience) is any continuous, bounded
and strictly increasing function on R. Almost universally, the activation function is the
logistic (or sigmoid)

�(z) =
1

1 + e�z
(1)

because of its nice additional computational and statistical properties.
I We build a two-layer neural network in the following way:

Inputs xk k = 1 : n
Bottom layer1 zj = �(wT

j x) j = 1 : m, wj 2 Rn

Top layer f = �(�T z) � 2 Rm

Output f 2 [0, 1]
In other words, the neural network implements the function

f (x) =
mX

j=1

�j zj =
mX

j=1

�j�(
mX

k=1

wkj xk ) 2 (�1,1) (2)

Note that this is just a linear combination of logistic functions.

1In neural net terminology, each variable zj is a unit, the bottom layer is hidden, while top one is visible, and the units in
this layer are called hidden/visible units as well. Sometimes the inputs are called input units; imagine neurons or individual
circuits in place of each x, y, z variable.
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Output layer options

I linear layer as in (2) f =
P

j �j zj
I logistic layer: in classification f (x) 2 [0, 1] is interpreted as the probability of the + class.

f (x) = �

0

@
mX

j=1

�j zj

1

A = �

0

@
mX

j=1

�j�(
X

j

wkj xk )

1

A (3)

I softmax layer in multiway classification

The softmax function �(z) : Rm ! (0, 1)m

�k (z) =
ezk

Pm
j=1 e

zj
(4)

I Properties
I Pm

j=1 �j (z) = 1 for all z
I for zk � zj , j 6= k �k (z) ! 1.

I derivatives
@�j
@zk

= �k�jk � �j�k
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Generalized Linear Models (GLM)

A GLM is a regression where the “noise” distribution is in the exponential fami ly.

I y 2 R, y ⇠ P✓ with
P✓(y) = e✓y�ln (✓) (5)

I the parameter ✓ is a linear function of x 2 Rd

✓ = �T x (6)

I We denote E✓[y ] = µ. The function g(µ) = ✓ that relates the mean parameter to the
natural parameter is called the link function.

The log-likelihood (w.r.t. �) is

l(�) = lnP✓(y |x) = ✓y �  (✓) where ✓ = �T x (7)

and the gradient w.r.t. � is therefore

r� l = r✓ lr�(�T x) = (y � µ)x (8)

This simple expression for the gradient is the generalization of the gradient expression you
obtained for the two layer neural network in the homework. [Exercise: This means that the
sigmoid function is the inverse link function defined above. Find what is the link function that
corresponds to the neural network.]
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Multi-layer/Deep neural networks

The construction can be generalized recursively to arbitrary numbers of layers.
Each layer is a linear combination of the outputs from a previous layer (a multivariate
operation), followed by a non-linear transformation via the logistic function �. Let
x ⌘ x(0), y ⌘ x(L), n0 = n, nL = 1 and define the recursion:

x(l)j = �
⇣
(w (l)

j )T x(l�l)
⌘
, for j = 1 : nl (9)

The vector variable x(l) 2 Rnl is the ouput of layer l of the network. As before, the sigmoid of
the last layer may be omitted.
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Are multiple layers necessary?

I 1990’s: NO

I 2000’s: YES

I A theoretical result

Theorem (Cybenko,⇡1986)
Any continuous function from [0, 1]n to R can be approximated arbitrarily closely by a linear
output, two layer neural network defined in (2) with a su�ciently large number of hidden units
m.

I A practical result

Deep Learning
Deep learning = multi-layer neural net

I So, what is new?
I small variations in the “units”, e.g. switch stochastically w.p. �(wT xin) (Restricted Bolzmann

Machine), Rectified Linear units
I training method stochastic gradient, auto-encoders vs. back-propagation (we will return to this

when we talk about training predictors)
I lots of data
I double descent
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Resnets – Residual networks

Idea What is the “simplest” input-output function? f0(x) = x
I Hence, a NN layer should learn the di↵erence w.r.t. identity f0

xl+1 = Bl�(Wlxl )+xl (10)

Generalization DenseNet
I Layer l gets inputs from l � 1, l � 2, . . .
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ConvNets – Convolutional Networks

I discrete convolution let f , g : Z! R
Z = all integers

(f ⇤ g)(t) =
X

i2Z
f (t � i)g(i) (11)

I convolution as Toeplitz matrix vector multiplication

I in ConvNets, Z is replaced by 1 : n, f is padded with 0’s

I g is a (smoothing) kernel
I i.e. g(i) = g(�i) > 0 and | supp g | = 2m + 1 ⌧ n,

P
i g(i) = 1

I Convolutional layer f  x input, g  w weights, s output

s(t) =
t+mX

i=t�m

wi s(t � i) (12)

I Pooling
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Autoencoders

Question How to learn from data without outputs y?
This is unsupervised learning, not prediction

Idea Learn a low dimensional/sparse representation h(x) of data x 2 Rn

h(x) 2 Rm, with m < n f (h(x)) ⇡ x! (13)

I Optimize L(x , f (h(x)))
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Variations

I If f linear, LLS , then we “learn” PCA
I Denoising autoencoder

I Add noise to x input, predict true x

x̃ ⇠ C( |x)

, min L(x , f (h(x̃))).(14)
I Sparse autoencoder

min L(x , f (h(x))) + ⌦(h) (15)

⌦ is regularization that makes h sparse

I


