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Marina Meila: Lecture IV:
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Analytic optimization /

Optimization generalities
Optimization glossar
Descent methods zoo

Descent methods
The steepest descent method /
Line minimization algorithms
The Newton-Raphson method
Examples: Logistic regression and Backpropagation

Reading HTF Ch.: Lasso 3.1,2,4, Logistic regression 4.4, Neural networks 11, Murphy Ch.:
Ridge regression (including numerics) 7.5, Descent methods 8.3.2,3,5, Neural networks
16.5.1-4, Autoencoders 28, Bach Ch.: 5.
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For more mathematical background, look e.g. at “Numerical recipes” chapter 10 or, for really advanced
treatment Nocedal and Wrigth (Ch 3, 6).
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The typical tralnlng problem

d f&j'ﬂdaj %hﬁéaj& "
= (oM fehon 72” WJJ e

Gived D = {(x%,y1),..., (x",y")} data set (and implicitly a prediction task)
F class of predictors (e.g Linear {f(x) = 87 x}, quadratic f(x) = x” Ax + 87 x + ~, neural
net)

WP ]7
and J(f; D) objectiv functlonrh ad Vaca‘wa‘y

find f = argmin J(f; D)
F

Remarks 2
» Typically objective functions J ,ﬁ(

’) J(f;D) = i(f) empirical loss® c}lM\/ar (1)

-‘2) I(f;D) = [(f)—i—)\R‘f) regularized obJectlve (2)

R(f) is called regularization (functional) and A > 0 is the regularization constant (or
parameter) S Bigs - Var
A is fixed in the minimization of J. Setting A can be thought as a form of model selection;
as we shall see later A plays the role of a smoothing parameter, or hyperparameter

» This lecture: algorithms for minimizing J's.
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Linear Least Squares regression

> Problem F = {f(x) = 87x}, Lis(y, f(x)) = (y — f(x))%, y €R, J =1L
» Solution
» Finding f € F is equivalent to finding 8 € R? (or R?™1)

« :l (K“J -,) ji>f:n,
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Linear Least Squares regression
> Problem F = {f(x) = 87x}, Lis(y, f(x)) = (y — f(x))2, y €R, J =1L
» Solution
» Finding f € F is equivalent to finding 8 € R? (or R?™1)
» define data matrix or (transpose) design matrix

(A ?gn’) ()T

October, 2022

COH v, e
X = (‘;)‘T eRnXd and Y= | Y |, E=]| ¢ e RrR?
X PPN cee
y" e
Ol

» Then we can write

Y = XB+E OLS
)
> The solution 3 is chosen to minimize the sum of the squared errors @rd“m Linear

JB) = Lis = i(y" — BTx)* = ||E|]? &?M"MQ ®3)

which gives Exercise Derive it »cloged —A‘»r'n—

B = (xX™X)7'XTy
. @xact - .
i mizadion

(ahnins Hobad nan)
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Linear Least Squares regression
> Problem F = {f(x) = 87x}, Lis(y, f(x)) = (y — f(x))2, y €R, J =1L
» Solution
> Finding f € F is equivalent to finding 8 € R? (or RY™!)
» define data matrix or (transpose) design matrix

M
(XZ)T yl 51
2 2
X = (g,ﬁ)‘T eRV" and Y = | VY |, E=| ¢ eRr?
o
Ol

» Then we can write ”gx L“ \:2 h (6)
Yo ORE = M-
» The solution [3’ is chosen to minimize the sum of the squared errors wa[hd@)
JB) = Lis = 320/ = 87x)" = ||EII? ®)
i=1
which gives Exercise Derive it
f= x0Ty @)
» Underlying statistical model y = 87x +¢, &~ N(0,02) (and (xlm,ylm) sampled
i.i.d., of course) ety

! —_— = r

P Define the negative log-likelihood| Liog; = — In P(y|x, 3) LI f C> M“CL In‘

> Then, (y — B7x)* = X1, ()’ = —20° I P(y/|x', B) = =20 Liog

» Hence, 3 from (4) is the Maximum Likelihood (ML) estimator of the parameter 3 and the
minimizer of l:/og/

» This is an example where the minimizer of J(f) has an analytical formula. A few more
examples of this kind follow.



Regularized Linear Regression %_ej\ad ][é':’ He)l!fré{);
@l =
Ble=2t

» L2 regularized (linear) LS regression (Ridge regression) e(ﬁ)
dote‘d %ﬁHW‘MWL £D) — i aT N2 e
glowal © AEP) = 320" = 8T+ A (5)

\ =1 _ /\
Solution 5 = (XTX 4 My)~IXTY Exercise Derive it. (28 ”201,5 n& = ]Iﬁ%/li

» L1 regularized (linear) regression (LASSO) e(ﬁ>
JED) = D (v =BT+ Aﬂgﬁ\l (6)
i=1

By contrast with the previos problem(s), this one does not have an analytic solution.
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Generative models for classification

» |f each class conditional distribution Px‘yzy can be estimated by an analytic formula, then
the generative classifier can be estimated analytically
» Examples LDA, QDA

Example (Naive Bayes for text classification)

The bag of words model of text. Let D = {words} be a dictonary. For simplicity, we shall
assume D = { and, average, batting, score, variance}. We are given a corpus D containing N
documents of two classes { sports= —1, statistics= 1}. For each document in D, we form a
vector x € {0, 1}|D‘ by setting x,, = 1 if the document contains word w and 0 otherwise. For
example, the document " Reddick’s batting average is 0.50" has x = [0110xs0]. The x vectors
are the data to which we fit a Naive Bayes model. Assume our toy corpus is now the table on
the left, and the estimated class conditional distributions are on the right.

Y
—1
-1
-1
-1 Px.—1]y=—1 ‘ y
—1 "8 4 8 4 0 -1 Py1)=05=p
1 8 6 0 2 6

==
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Example (Naive Bayes for text (continued))

Before we go further, we will “adjust” the 0 and 1 estimated probabilities for “variance” and
“batting”, setting them to 1/M, respectively 1 — 1/M for some “large” M = 10 Exercise Do you
think this problem occurs often in real applications? Find a statistical framework to justify the adjustment.
The probability of a new document, e.g x = [10010] in class 1, respectively —1 is

P(xly=—1) = 0.8x(1—0.4)x(1—0.8)x0.4x0.9 (7)
= 0.89(1—0.8)""" x042(1—04) 2., (8)
P(xly=1) = 0.8x(1—0.6)x (1—0.1)x 0.2 X (1 — 0.6) (9)

The NB classifier we obtain is

P P Pocei P P
fx) = In P ssa i and|1 55 i average|1 w5a i batting |1 50 score|1 e variance|1
1—p and|—1 average| —1 Pbatting\fl score| —1 Pvariance\—l
S~ N—— N — N—— N — N———
1 1 2/3 +oco 2 0
1-—P, 1-— P 1— P ...
+(17x1)|n73"d‘1 +(1,X2)|n$ge‘l +(17X3)|nw +(1—xa)ln
1= (B = I P erage| 1 I P ting |1

which evaluates to £([10010]) =In1+1In2 +1In3 +In2+InJ = 0.405 > 0 Notes As you saw
above, we are not required to include all possible words in the dictionary Exercise Find some reasons why. A
common preprocessing step stemming which aims to map words in the same word family to a single w; e.g
“batting” — “bat”. Sometimes stop words like “the”, “and” are removed.



Most predictors can't be estimated analytically

October, 2022

» Unfortunately, minimizing J analytically is possible only in a handful of examples.

> In all other cases, we find f = argmin J by numerical/iterative methods also called search

(or training/learning, of course). For example
» CART algorithm Exercise What J is the CART algorithm minimizing?
P Perceptron algorithm (will be revisited this lecture)
» Therefore now we study generic algorithms for finding minima of functions of n variables.
This is called (numerical) optimization.
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Optimization glossary Chang,a W\Oh’mh _JD()
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Change in notation!

Here, f is a function to be minimized, and x the variable in the domain of the function. In a
learning task, f will be replaced by an objective J like Ljog and x by the parameters of the
predictor, e.g. w, 3,0, .. ..

The methods in this lecture belong to the class of unconstrained optimization methods.
Problem Find miny f(x) for x € RY or x € D the domain of f. We assume that f is a twice
differentiable function with continuous second derivatives.

Notation The gradient of f is the column vector

v = [Lw] = A )
Tt 9%

and the Hessian of f is the square symmetric matrix of second partial derivatives of f

V2f(x) = {‘W (x)]n‘ 16 Pdwd (12)
e
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Assumed : 3y mwmetric







i Optimization basics

@d X.Ol

A <€ JAx Zo
cA 20 ?W gt wxeﬂ
& AF) 2
A >o strietly P-4 Joc agt, @-vt

T r RFO
/= X Ax>° o
2> NG Zo  fr ool LVHE

Ex -, szf({)>o &7 @
- (X*) =9 islafed  looo]

X
2 shic



Optimization basics
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Local and global minima
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»> A local minimum for f is point x* for which
f(x*) < f(x) whenever ||x —x*|| < e

locad

» A global minimum for f is point x* for which wun

f(x*) < f(x) for all x in the domain of f %‘O‘ g nin

We say x* is a strict local/global minimum when the above inequalities are strict for
X # x*.

» A minimum is isolated if it is the only local minimum in an e-ball around itself.

> A stationary point for f is a point x* for which Vf(x*) = 0.

Theorem

If f has continuous second derivative everywhere in D, and x* € D is a point for which
Vf(x*) =0 and V2f(x*) > 0 (V2f(x*) > 0) then x* is a (nonsingular) local minimum for f.

In what follows, we will deal only with non-singular local minima. A non-singular local
minimum is strict and isolated.
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Descent methods
r ]
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Many unconstrained optimization methods for finding a local minimum are of the form:
Xk+l — Xk + nkdk (13)

where dX € RY represents an (unnormalized) direction and 1k > 0 is a scalar called the step
size.
Direction choice
> gradient based d¥ = —D*Vf(xk) with DK € R"*"
» steepest descent DX = |
» stochastic gradient (more about it later)
> Newton-Raphson DX = V2f(x*)~1
> conjugate gradient — implicity multistep rescaling of the axes “equivalent” to DX = V2f( )~ L
» quasi-Newton — implicit multistep approximation of D¥ = V2f f(x k) L
» non-gradient based
» coordinate descent d“ = one of the basis vectors in RY
Step size choice
> line minimization 7% = min,, f(x* + nd*)
» Armijo rule (also called Backtracking) = search but not minimization
> constant step size nk = s
> diminishing step size nX — 0; 3", nk = oo

£
&
g
=2
3
g
5
®
g
£
5
A
2
]
g
B
o
s
2
]
2




e IV: Training predictors. Part |

o
&
s
&
5
2
8
=}
=]

Steepest descent

Algorithm STEEPEST-DESCENT
Input x? initial point jp
For k =0,1,...
1. calculate dk = Vf(x*)
2. find n* by line_ minimization
3. xKt1 5 Xk pkdk
untilStopping condipjon satisfied
Dutput x*T
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