


M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

1

Lecture IV: Training predictors, Part I

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2022



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

2

Analytic optimization

Optimization generalities
Optimization glossary
Descent methods zoo

Descent methods
The steepest descent method
Line minimization algorithms
The Newton-Raphson method
Examples: Logistic regression and Backpropagation

Reading HTF Ch.: Lasso 3.1,2,4, Logistic regression 4.4, Neural networks 11, Murphy Ch.:
Ridge regression (including numerics) 7.5, Descent methods 8.3.2,3,5, Neural networks
16.5.1–4, Autoencoders 28, Bach Ch.: 5.

For more mathematical background, look e.g. at “Numerical recipes” chapter 10 or, for really advanced

treatment Nocedal and Wrigth (Ch 3, 6).



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

3

The typical training problem

Given D = {(x1, y1), . . . , (xn, yn)} data set (and implicitly a prediction task)
F class of predictors (e.g Linear {f (x) = �T

x}, quadratic f (x) = x
T
Ax + �T

x + �, neural
net)
and J(f ;D) objective function

find f = argmin
F

J(f ;D)

Remarks
I Typically objective functions J

J(f ;D) = L̂(f ) empirical loss (1)

OR
J�(f ;D) = L̂(f ) + �R(f ) regularized objective (2)

R(f ) is called regularization (functional) and � � 0 is the regularization constant (or
parameter)
� is fixed in the minimization of J. Setting � can be thought as a form of model selection;
as we shall see later � plays the role of a smoothing parameter, or hyperparameter

I This lecture: algorithms for minimizing J’s.







M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

4

Linear Least Squares regression
I Problem F = {f (x) = �T

x}, LLS (y , f (x)) = (y � f (x))2, y 2 R, J = L̂
I Solution

I Finding f 2 F is equivalent to finding � 2 Rd (or Rd+1)

I define data matrix or (transpose) design matrix

X =

2

6666664

(x1)T

(x2)T

. . .
(xi )T

. . .
(xn)T

3

7777775
2 RN⇥n and Y =

2

664

y
1

y
2

. . .
y
n

3

775 , E =

2

664

"1

"2

. . .
"n

3

775 2 Rd

I Then we can write
Y = X� + E

I The solution �̂ is chosen to minimize the sum of the squared errors

J(�) = L̂LS =
nX

i=1

(y i � �T
xi )

2 = ||E ||2 (3)

which gives Exercise Derive it
�̂ = (XTX)�1XT

y (4)

I Underlying statistical model y = �T
x + ", " ⇠ N(0,�2) (and (x1:N , y1:N) sampled

i.i.d., of course)
I Define the negative log-likelihood Llogl = � lnP(y |x, �)
I Then, (y � �T

x)2 =
P

n

i=1("
i )2 = �2�2 lnP(y i |xi , �) = �2�2

L̂logl

I Hence, �̂ from (4) is the Maximum Likelihood (ML) estimator of the parameter � and the
minimizer of L̂logl

I This is an example where the minimizer of J(f ) has an analytical formula. A few more
examples of this kind follow.



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

4

Linear Least Squares regression
I Problem F = {f (x) = �T

x}, LLS (y , f (x)) = (y � f (x))2, y 2 R, J = L̂
I Solution

I Finding f 2 F is equivalent to finding � 2 Rd (or Rd+1)
I define data matrix or (transpose) design matrix

X =

2

6666664

(x1)T

(x2)T

. . .
(xi )T

. . .
(xn)T

3

7777775
2 RN⇥n and Y =

2

664

y
1

y
2

. . .
y
n

3

775 , E =

2

664

"1

"2

. . .
"n

3

775 2 Rd

I Then we can write
Y = X� + E

I The solution �̂ is chosen to minimize the sum of the squared errors

J(�) = L̂LS =
nX

i=1

(y i � �T
xi )

2 = ||E ||2 (3)

which gives Exercise Derive it
�̂ = (XTX)�1XT

y (4)

I Underlying statistical model y = �T
x + ", " ⇠ N(0,�2) (and (x1:N , y1:N) sampled

i.i.d., of course)
I Define the negative log-likelihood Llogl = � lnP(y |x, �)
I Then, (y � �T

x)2 =
P

n

i=1("
i )2 = �2�2 lnP(y i |xi , �) = �2�2

L̂logl

I Hence, �̂ from (4) is the Maximum Likelihood (ML) estimator of the parameter � and the
minimizer of L̂logl

I This is an example where the minimizer of J(f ) has an analytical formula. A few more
examples of this kind follow.



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

4

Linear Least Squares regression
I Problem F = {f (x) = �T

x}, LLS (y , f (x)) = (y � f (x))2, y 2 R, J = L̂
I Solution

I Finding f 2 F is equivalent to finding � 2 Rd (or Rd+1)
I define data matrix or (transpose) design matrix

X =

2

6666664

(x1)T

(x2)T

. . .
(xi )T

. . .
(xn)T

3

7777775
2 RN⇥n and Y =

2

664

y
1

y
2

. . .
y
n

3

775 , E =

2

664

"1

"2

. . .
"n

3

775 2 Rd

I Then we can write
Y = X� + E

I The solution �̂ is chosen to minimize the sum of the squared errors

J(�) = L̂LS =
nX

i=1

(y i � �T
xi )

2 = ||E ||2 (3)

which gives Exercise Derive it
�̂ = (XTX)�1XT

y (4)

I Underlying statistical model y = �T
x + ", " ⇠ N(0,�2) (and (x1:N , y1:N) sampled

i.i.d., of course)
I Define the negative log-likelihood Llogl = � lnP(y |x, �)
I Then, (y � �T

x)2 =
P

n

i=1("
i )2 = �2�2 lnP(y i |xi , �) = �2�2

L̂logl

I Hence, �̂ from (4) is the Maximum Likelihood (ML) estimator of the parameter � and the
minimizer of L̂logl

I This is an example where the minimizer of J(f ) has an analytical formula. A few more
examples of this kind follow.



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

5

Regularized Linear Regression

I L2 regularized (linear) LS regression (Ridge regression)

J(f ;D) =
nX

i=1

(y i
� �T

xi )
2 + �||�||2 (5)

Solution �̂ = (XTX + �In)�1XT
Y Exercise Derive it.

I L1 regularized (linear) regression (LASSO)

J(f ;D) =
nX

i=1

(y i
� �T

xi )
2 + �||�||1 (6)

By contrast with the previos problem(s), this one does not have an analytic solution.





M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

7

Generative models for classification
I If each class conditional distribution PX |Y=y can be estimated by an analytic formula, then

the generative classifier can be estimated analytically
I Examples LDA, QDA

Example (Naive Bayes for text classification)

The bag of words model of text. Let D = {words} be a dictonary. For simplicity, we shall
assume D = { and, average, batting, score, variance}. We are given a corpus D containing N

documents of two classes { sports= �1, statistics= 1}. For each document in D, we form a
vector x 2 {0, 1}|D| by setting xw = 1 if the document contains word w and 0 otherwise. For
example, the document ”Reddick’s batting average is 0.50” has x = [0 1 1 0 xs0]. The x vectors
are the data to which we fit a Naive Bayes model. Assume our toy corpus is now the table on
the left, and the estimated class conditional distributions are on the right.

x y

0 1 1 0 0 �1
1 1 0 1 0 �1
1 0 1 1 0 �1
1 0 1 0 0 �1
1 0 1 0 0 �1
1 1 0 0 1 1
0 0 0 1 0 1
1 1 0 0 1 1
1 1 0 0 0 1
1 0 0 0 1 1

PXj=1|Y=�1 y

.8 .4 .8 .4 0 �1

.8 .6 0 .2 .6 1
PY (1) = 0.5 = p



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

8

Example (Naive Bayes for text (continued))
Before we go further, we will “adjust” the 0 and 1 estimated probabilities for “variance” and
“batting”, setting them to 1/M, respectively 1� 1/M for some “large” M = 10 Exercise Do you
think this problem occurs often in real applications? Find a statistical framework to justify the adjustment.
The probability of a new document, e.g x = [10010] in class 1, respectively �1 is

P(x|y = �1) = 0.8 ⇥ (1 � 0.4) ⇥ (1 � 0.8) ⇥ 0.4 ⇥ 0.9 (7)

= 0.8x1 (1 � 0.8)1�x1 ⇥ 0.4x2 (1 � 0.4)1�x2 . . . (8)

P(x|y = 1) = 0.8 ⇥ (1 � 0.6) ⇥ (1 � 0.1) ⇥ 0.2 ⇥ (1 � 0.6) (9)

The NB classifier we obtain is

f (x) = ln
p

1 � p
| {z }

1

+x1 ln
Pand|1

Pand|�1
| {z }

1

+x2 ln
Paverage|1

Paverage|�1
| {z }

2/3

+x3 ln
Pbatting|1

Pbatting|�1
| {z }

+1

+x4 ln
Pscore|1

Pscore|�1
| {z }

2.

+x5 ln
Pvariance|1

Pvariance|�1
| {z }

0

(10)

+(1 � x1) ln
1 � Pand|1

1 � Pand|�1
+ (1 � x2) ln

1 � Paverage|1

1 � Paverage|�1
+ (1 � x3) ln

1 � Pbatting|1

1 � Pbatting|�1
+ (1 � x4) ln

1 � Pscore|1

1 � Pscore|�1
+ (1 � x5) ln

1 � Pvariance|1

1 � Pvariance|�1

which evaluates to f ([1 0 0 1 0]) = ln 1 + ln 3
2 + ln 2

9 + ln 2 + ln 9
4 = 0.405 > 0 Notes As you saw

above, we are not required to include all possible words in the dictionary Exercise Find some reasons why. A

common preprocessing step stemming which aims to map words in the same word family to a single w ; e.g

“batting” ! “bat”. Sometimes stop words like “the”, “and” are removed.



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

9

Most predictors can’t be estimated analytically

I Unfortunately, minimizing J analytically is possible only in a handful of examples.

I In all other cases, we find f = argmin
F

J by numerical/iterative methods also called search

(or training/learning, of course). For example
I CART algorithm Exercise What J is the CART algorithm minimizing?
I Perceptron algorithm (will be revisited this lecture)

I Therefore now we study generic algorithms for finding minima of functions of n variables.
This is called (numerical) optimization.



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

10

Optimization glossary

Change in notation!

Here, f is a function to be minimized, and x the variable in the domain of the function. In a
learning task, f will be replaced by an objective J like L̂logl and x by the parameters of the
predictor, e.g. w ,�, ✓, . . ..

The methods in this lecture belong to the class of unconstrained optimization methods.
Problem Find minx f (x) for x 2 Rd or x 2 D the domain of f . We assume that f is a twice
di↵erentiable function with continuous second derivatives.
Notation The gradient of f is the column vector

rf (x) =


@f

@xi
(x)

�
n

i=1

(11)

and the Hessian of f is the square symmetric matrix of second partial derivatives of f

r
2
f (x) =


@2

f

@xi xj
(x)

�n

i,j=1

(12)





M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

11

Optimization basics



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

11

Optimization basics



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

12

Local and global minima

I A local minimum for f is point x⇤ for which

f (x⇤)  f (x) whenever ||x � x
⇤
|| < ✏

I A global minimum for f is point x⇤ for which

f (x⇤)  f (x) for all x in the domain of f

We say x
⇤ is a strict local/global minimum when the above inequalities are strict for

x 6= x
⇤.

I A minimum is isolated if it is the only local minimum in an ✏-ball around itself.
I A stationary point for f is a point x⇤ for which rf (x⇤) = 0.

Theorem
If f has continuous second derivative everywhere in D, and x

⇤
2 D is a point for which

rf (x⇤) = 0 and r
2
f (x⇤) � 0 (r

2
f (x⇤) > 0) then x

⇤
is a (nonsingular) local minimum for f .

In what follows, we will deal only with non-singular local minima. A non-singular local
minimum is strict and isolated.



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

13

Descent methods

Many unconstrained optimization methods for finding a local minimum are of the form:

x
k+1 = x

k + ⌘kdk (13)

where d
k
2 Rd represents an (unnormalized) direction and ⌘k > 0 is a scalar called the step

size.
Direction choice
I gradient based d

k = �D
k
rf (xk ) with D

k
2 Rn⇥n

I steepest descent Dk = I

I stochastic gradient (more about it later)
I Newton-Raphson D

k = r2
f (xk )�1

I conjugate gradient – implicity multistep rescaling of the axes “equivalent” to D
k = r2

f (xk )�1

I quasi-Newton – implicit multistep approximation of Dk = r2
f (xk )�1

I non-gradient based
I coordinate descent dk = one of the basis vectors in Rd

Step size choice

I line minimization ⌘k = min⌘ f (xk + ⌘dk )
I Armijo rule (also called Backtracking) = search but not minimization
I constant step size ⌘k = s

I diminishing step size ⌘k ! 0;
P

k
⌘k = 1



M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

14

Steepest descent

Algorithm Steepest-Descent

Input x
0 initial point

For k = 0, 1, . . .
1. calculate d

k = rf (xk )
2. find ⌘k by line minimization
3. x

k+1
! x

k
� ⌘kdk

until stopping condition satisfied
Output x

k+1


