

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

1

Lecture IV: Training predictors, Part I

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2022

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

2

Analytic optimization

Optimization generalities
Optimization glossary
Descent methods zoo

Descent methods
The steepest descent method
Line minimization algorithms
The Newton-Raphson method
Examples: Logistic regression and Backpropagation

Reading HTF Ch.: Lasso 3.1,2,4, Logistic regression 4.4, Neural networks 11, Murphy Ch.:
Ridge regression (including numerics) 7.5, Descent methods 8.3.2,3,5, Neural networks
16.5.1–4, Autoencoders 28, Bach Ch.: 5.

For more mathematical background, look e.g. at “Numerical recipes” chapter 10 or, for really advanced

treatment Nocedal and Wrigth (Ch 3, 6).

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

5

Regularized Linear Regression

I L2 regularized (linear) LS regression (Ridge regression)

J(f ;D) =
nX

i=1

(y i
� �T

xi)
2 + �||�||2 (5)

Solution �̂ = (XTX + �In)�1XT
Y Exercise Derive it.

I L1 regularized (linear) regression (LASSO)

J(f ;D) =
nX

i=1

(y i
� �T

xi)
2 + �||�||1 (6)

By contrast with the previos problem(s), this one does not have an analytic solution.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

13

Descent methods

Many unconstrained optimization methods for finding a local minimum are of the form:

x
k+1 = x

k + ⌘kdk (13)

where d
k
2 Rd represents an (unnormalized) direction and ⌘k > 0 is a scalar called the step

size.
Direction choice
I gradient based d

k = �D
k
rf (xk) with D

k
2 Rn⇥n

I steepest descent Dk = I

I stochastic gradient (more about it later)
I Newton-Raphson D

k = r2
f (xk)�1

I conjugate gradient – implicity multistep rescaling of the axes “equivalent” to D
k = r2

f (xk)�1

I quasi-Newton – implicit multistep approximation of Dk = r2
f (xk)�1

I non-gradient based
I coordinate descent dk = one of the basis vectors in Rd

Step size choice

I line minimization ⌘k = min⌘ f (xk + ⌘dk)
I Armijo rule (also called Backtracking) = search but not minimization
I constant step size ⌘k = s

I diminishing step size ⌘k ! 0;
P

k
⌘k = 1

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

14

Steepest descent

Algorithm Steepest-Descent

Input x
0 initial point

For k = 0, 1, . . .
1. calculate d

k = rf (xk)
2. find ⌘k by line minimization
3. x

k+1
! x

k
� ⌘kdk

until stopping condition satisfied
Output x

k+1

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

26

NEVER INVERT A MATRIX and other rules of the numerically savvy

. . . unless the inverse matrix is the last result you need from your computations. You may not
think of it much, but data in computers has finite precision, and all our results have numerical
errors. Here are a few simple rules to get the same result faster and often with a smaller
numerical error

I To calculate z = A
�1

b call a linear system solver for Az = b. This is twice as fast for
general A.

I If A is symmetric (in a linear system, eigenvalue problem, etc), tell your solver. You save
time (another factor of 3) and the results are much more accurate.

I (An advanced one) Solve all large linear systems iteratively.
I Computing the product ABCd where A,B,C are matrices and d is a vector: ((AB)C)d

takes 2n3 + n
2 operations, A(B(Cd)) takes 3n2.

I Adding small numbers to large numbers: in a computer, 1.+ " = 1. if " < 1e � 16 or so.
Use the log-sum-exp trick (Murphy) or don’t waste computer time doing it (more
examples of the former later).

I Ask me about: numerical precision vs convergence precision vs statistical precision

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

28

Example: Logistic regression

Training = Estimating the parameters by Max Likelihood

Problem setup
I Denote y⇤ = (1� y)/2 2 {0, 1}

I The likelihood of a data point is PY |X (y |x) =
e
y⇤ f (x)

1+ef (x)

I The log-likelihood is l(�; x , y) = y⇤f (x)� ln(1 + e
f (x))

I Log-likelihood of the data set D

l(�;D) =
1

n

nX

i=1

l(�; (xi , y i)) (21)

I Define the loss function
Llogl (�) = �l(�) (22)

I and the optmization criterion

J(�) = L̂logl =
1

n

nX

i=1

�l(�; xi , y i) (23)

Minimizing J is maximizing l(�;D)

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

30

Calculating the gradient
I @l

@f = y⇤ �
1

1+ef

This is a scalar, and sgn @l
@f = y

I We have also @f (x)
@� = x

I Now, the gradient of l w.r.t the parameter vector � is

@l

@�
=

@l

@f

@f

@�
=

✓
y⇤ �

1

1 + e�f (x)

◆
x (24)

Interpretation: The infinitezimal change of � to increase log-likelihood for a single data
point is along the direction of x , with the sign of y Exercise Prove that (23) has a unique local

optimum.

Algorithm Steepest-Descent for Logistic Regression

Input �0
2 Rd initial point

For k = 0, 1, . . .

1. calculate d
k = 1

n

P
n

i=1

⇣
y
i
⇤ �

1

1+e�f (xi)

⌘
x
i

2. find ⌘k by line minimization
3. �k+1

! �k
� ⌘kdk

until stopping condition satisfied
Output �k+1

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

30

Calculating the gradient
I @l

@f = y⇤ �
1

1+ef

This is a scalar, and sgn @l
@f = y

I We have also @f (x)
@� = x

I Now, the gradient of l w.r.t the parameter vector � is

@l

@�
=

@l

@f

@f

@�
=

✓
y⇤ �

1

1 + e�f (x)

◆
x (24)

Interpretation: The infinitezimal change of � to increase log-likelihood for a single data
point is along the direction of x , with the sign of y Exercise Prove that (23) has a unique local

optimum.

Algorithm Steepest-Descent for Logistic Regression

Input �0
2 Rd initial point

For k = 0, 1, . . .

1. calculate d
k = 1

n

P
n

i=1

⇣
y
i
⇤ �

1

1+e�f (xi)

⌘
x
i

2. find ⌘k by line minimization
3. �k+1

! �k
� ⌘kdk

until stopping condition satisfied
Output �k+1

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

31

Example: Backpropagation
I The Backpropagation algorithm is steepest descent for neural networks
I Consider a two layer neural network

f (x) =
mX

j=1

�j zj =
mX

j=1

�j�(
nX

k=1

wkj xk) (25)

The parameters are � and W = [wkj]j=1:m,k=1:n

I Let the loss be LLS the Least Squares loss, J(�,W) = L̂LS (�,W)

Derivation of the gradient Exercise Derive this

@J

@�j

=
1

n

X

i

@(y i
� f (xi))2

@�j

=
1

n

X

i

2(y i
� f (xi))zj (x

i) (26)

@J

@wkj

=
1

n

X

i

@LLS (y i , f (xi))

@zj (xi)

@zj (xi)

@wkj

=
1

n

X

i

⇣
2�k (y

i
� f (xi))

⌘
zj (x

i)(1� zj (x
i))

| {z }
�0

x
i

k

=
�k

n

X

i

x
i

k
(y i

� f (xi))r(logistic regressor) (27)

In the above we used the identity �0 = �(1� �) Exercise Prove it

Computational savings
I when f (xi) is computed, zj (xi) are too; they should be “cached” and re-used
I the derivative of � is easily obtained from the � value
I Exercise The above gradient formulas can be easilty written in matrix-vector form

Backpropagation extends recursively to multi-layer networks. Exercise Derive it. Exercise Calculate

the gradient for the 2 layer neural network with logistic output.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

32

Practical properties of backpropagation

I Unlike in logistic regression, J has many local optima even for two layers and simple
problems.

I Hence, initialization is important, and there are no general rules for a good initialization.
Even if the neural network works well, we do not know if we are at the optimum.

I Saturation If z̃j = w
T

j
x is large in magnitude, then zj = �(z̃j) is near 0 or 1. In either

case, �0(z̃j) = zj (1� zj) ⇡ 0. We say that that this sigmoid is saturated; zj will be
virtually insensitive to changes in wj

2

To avoid saturation at the beginning of the training, one initializes W with “small” (w.r.t
max ||xi ||, random values. Exercise Why random and not exactly 0?

I To speed up training, it is useful to standardize the input data3 x
1:N as a preprocessing

step. Exercise Note that theoretically shifting and rescaling the data should NOT have any e↵ect.
I J can have plateaus, i.e. regions where rJ ⇡ 0 but that do not contain a local minimum.

Exercise What can cause plateaus? Exercise And what is bad about them?

I In conclusion, training neural networks by backpropagation is an art: requires experience
with the algorithm, careful tuning, repeated restarts, and a long time.

2or to changes in previous layers, if this is a multilayer network.
3Standardization should NOT include the dummy coordinate x

0 ⌘ 1.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

33

Training autoencoders

I The autoencoder is a neural network with one (or more) hidden layers, whose output y is
identical with the input x .

I Let x 2 Rd , denote by z 2 Rm the variables in the hidden layer, and by x̃ 2 Rd the output
variables. Then,

x1:n
W
�! z1:m

W̃
�! x̃1:n

zj = �(wT

j
x), j = 1 : m x̃k = �(w̃T

k
z), k = 1 : n (28)

where W = [wij]i=1:n,j=1:m and W̃ = [w̃kj]j=1:n,k=1:m are the parameters (or weights) to
be learned.
Note that this is a neural network with multiple outputs

I The “labels” are the inputs x1:n, and the cost is the least squares cost.

L(x , x̃) = ||x � x̃ ||
2 =

nX

i=1

(xi � x̃i)
2 (29)

If the variables x are binary, then the output layer will have a sigmoid, and the cost will be the logistic

regression cost Llogl

I The training proceeds by backpropagation.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

34

What is an autoencoder good for?

I Note that if m � n, we could set W = ↵I , W̃ = 1
↵ I ; then z could be a (scaled) copy of x ,

and no training would be necessary to reproduce the input. Exercise Why do we need ↵ at all?

Thus, interesting autoencoders set m < n. If x can be reconstructed well from z, then we
have succeeded to compress x , and we have learned in the process a set of descriptors, or
a representation for x .
If we want to have m > n, then we must use a sparsity inducing regularization (e.g L1) to
obtain an interesting representation.

I Autoencoders are the winning ingredient in Deep neural networks, and are a general
method automatically find features for prediction.
If the real problem is to predict another variable y from x , one can do as follows:

1. Train an autoencoder for x , learn W , W̃ .
2. “remove” the top layer W̃ , x̃ , i.e discard all but W
3. Construct a predictor ŷ = f (z), with z = �(Wx), where W are the autoencoder weights.

Optional Do backpropagation to fine tune W .

If f is linear or logistic, we obtain a two layer neural net x ! z ! y .
I The above can be applied recursively. Given z

1:N the representations of the inputs x
1:N ,

one can now train an autoencoder z1:m ! u1:p ! z̃1:m, perhaps with p < m.
The interpretation is that u1:p are representing x at a higher level of abstraction than z.

I By using autoencoders, one can train multilayer neural networks, i.e. deep networks, while
avoiding the plateaus that plague backpropagation. Hence “deep learning” is training with
autoencoders.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

15

How to evaluate an optimization method? [Optional]

I Does it converge to a minimum?

As we shall see, all the methods described here converge to a minimum, but some of the
require the function f to have additional “good” properties. A method which converges for
larger classes of f ’s is more robust.

I How fast?

Answer is usually in terms of rates of convergence
Let ek = x

k
� x

⇤ or ek = f (xk)� f (x⇤) denote the “error” at step k. Then, an algorithm has
a rate of convergence of order p if

||e
k+1

||  �(||ek ||)p for some 0 < � < 1 (14)

In the above, p > 0 but not necessarily an integer.
Most common cases are p = 1 (linear1) and p = 2 (quadratic). A rate of p < 1 is possible,
and relevant for machine learning (see Part II). Superlinear scales are desirable – and often
achievable.
Some modern machine learning algorithms have sublinear rates, e.g

||e
k
|| 

�

k
||e

0
|| (15)

This is considered a slow convergence rate in classical optimization. Exercise Why may we like this

rates in statistics/machine learning?

I Practical issues: Is it easy to implement or tune? Available software?

1The use of the term “linear” here is inconsistent with its use in e.g complexity theory. If an optimization algorithm is

linear, that means that the error decreases exponentially with k, as ||ek ||  �k ||e0||.

M
ar
in
a
M
ei
la
:
L
ec

tu
re

IV
:
T
ra
in
in
g
pr
ed

ic
to
rs
,
P
ar
t
I

O
ct
o
b
er
,
2
0
2
2

16

Computational complexity – theory and practice

In optimization problems, there are various ways of expressing the computational complexity of
an algorithm:

I number of flops (floating point operations) per iteration, usually as a function of n the
dimension of the problem

I number of function or gradient evaluations per iteration
I number of iterations; this latter quantity is given implicitly, by the rate of convergence.
I memory requirements

I With the increased complexity and variation of computer systems, the above mentioned
number of operations is becoming obsolete. Algorithms are increasingly judged by other,
system-related qualities, like: type of memory access (do they access memory in blocks or
randomly), cache misses, etc. These criteria are beyond the scope of this course, but what
you need to remember is that the texbook properties on an algorithm alone do not always
predict its performance on the system you are going to run it. You may need to
experiment with parameters and with algorithms to determine which algorithm is better
suited for your data and system.

